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ABSTRACT 

 

Title of Dissertation: PREDICTION OF PERMANENT 

DEFORMATION IN ASPHALT CONCRETE 

 

Regis Luis Egual de Carvalho, Doctor of 
Philosophy, 2012 

  

Directed By: Professor Charles W. Schwartz 
Department of Civil and Environmental Engineering 

 

Permanent deformation is a major distress in flexible pavements that leads to 

the development of rutting along the wheel path of heavily trafficked roads. Early 

detection of rutting is very important for preventive maintenance programs and 

design of rehabilitation strategies. Rutting by definition is the accumulated permanent 

deformation that remains after removal of the load. Rigorous modeling of permanent 

deformations using nonlinear finite element analysis based on the correct physical 

mechanism of residual deformations after removal of the load provides important 

insights into the rutting problem. This dissertation documents the study of permanent 

deformation in asphalt concrete in pavement structures using a fully mechanistic 

model based on Schapery’s viscoelasticity and Perzyna’s viscoplasticity theories. The 

model is calibrated and implemented in a 3D finite element commercial software 

package. Two calibration procedures are performed and discussed. Two immediate 
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practical applications are shown and a simulation of full scale accelerated pavement 

test is performed. 

This research demonstrates that the Perzyna-HiSS viscoplastic model can be 

successfully calibrated using either research-grade creep and recovery tests or the 

more simple and production-oriented Flow Number test. The importance of induced 

shear stress reversals under a moving wheel load is documented. The 3D finite 

element simulation is then used to identify the fundamental differences on how 

rutting develops in different pavement structures in terms of the differences in the 

transverse profile and distribution of rutting within the layer. The analysis results are 

used to develop new pavement-specific depth functions for potential future 

incorporation into the AASHTO Mechanistic-Empirical Pavement Design Guide 

(MEPDG). Lastly, the 3D finite element model is used to predict rutting at one lane 

of the FHWA’s full-scale Accelerated Load Facility experiment. After correction for 

some anomalies during the early loading cycles in the experiment, the predicted and 

measured rutting at the center of the wheel path were in good agreement. 
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Chapter 1   Introduction 

Permanent deformation occurs in most of the pavement layers and causes the 

development of ruts along the wheel path at the surface. Early detection of rutting is very 

important for preventive maintenance programs and design of rehabilitation strategies. 

Rutting is defined as a longitudinal surface depression occurring in the wheel 

paths of roadways (FHWA, 2003). It is often followed in later stages by an upheaval 

along the sides of the rut. It can lead to structural failure and potential danger from 

hydroplaning. Rutting accumulates incrementally with small permanent deformations 

from each load application over the pavement’s service life. Rutting is by definition a 

load-related pavement distress. 

The total rutting is the combination of accumulated permanent deformation in all 

layers in the pavement structure. Some research suggests that the shape of the surface 

profile can indicate which layer is responsible for the failure of the pavement structure 

due to rutting. In well-designed flexible pavements, trench studies show that nearly all of 

the total rutting occurred within the top 150 mm of surface asphalt concrete layer. 

Two mechanisms are the main causes of rutting development. Compaction is the 

primary mechanism at initial stages of loading, in which the material volume decreases 

underneath the wheel path with no significant upheaval along the sides of the wheel path. 

After this initial stage is complete, distortion without volume alteration occurs and the 

material beneath the wheel path migrates to the edge forming the upheaval along the. 

This deformation mode is essentially caused by shear. Excessive accumulation of shear 

deformation leads to structural failure. 
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Three types of models are used to compute permanent deformations: empirical, 

mechanistic-empirical and fully mechanistic. Examples of empirical models are 

regression equations fitted to observed field data. They are often the simplest 

mathematical form and include no material related properties or site parameters and are 

commonly used in specific applications such as performance predictions in pavement 

management systems. The intention in these cases is to estimate future performance 

based solely on the recorded distress history as a mere extrapolation. 

Mechanistic-empirical models (M-E) are based on a combination of simple 

mechanistic response predictions coupled with empirical distress models, also called 

transfer functions, for predicting field performance (e.g., rutting, cracking). During 

application, the mechanistic portion of the model is obtained through a structural analysis 

of the pavement subjected to traffic loading and environmental inputs. Linear elasticity is 

often used for its relatively simple formulation and fast computer calculations. 

Fully mechanistic models rely on complex constitutive models to directly predict 

permanent deformations, cracking and other distresses. With the vast capabilities of the 

mechanistic approach, the influence of different loading (e.g., duration, magnitude) and 

environmental (e.g., temperature) conditions can be evaluated and incorporated directly 

into the constitutive model. Since mechanistic models are capable of directly predicting 

pavement distresses, there is no need for empirical transfer functions. However, 

mechanistic models are complex, expensive to calibrate, and computationally expensive 

to execute. Applications of advanced constitutive models to analyze the behavior of 

asphalt concrete in pavement structures have been limited. Applied mechanistic modeling 

is at the leading edge of pavement research. 



www.manaraa.com

 

 3 

 

1.1. Problem Statement 

There are significant limitations to the use of mechanistic-empirical models to 

predict permanent deformation in flexible pavements. The most fundamental limitation 

relies on the simple definition of an empirical relationship—i.e., the use of observed data 

instead of theory to model a phenomenon. The practical implication is that purely 

empirical models are generally not applicable to conditions that are significantly different 

from those used for the model calibration. 

The incorporation of mechanistic responses reduces the limitations by making the 

model dependent on pavement stress and/or strain response that can be calculated for 

each desired condition. Unfortunately, this improvement has its own limitations and 

shortfalls. The most basic limitation involves the choice of stress conditions for 

calibrating the material response and how these compare to actual stress states in the 

field. An example of this is the development of rutting prediction models based on 

unconfined repeated load testing performed in the laboratory. In the field the material is 

constantly subjected to varying confining stresses that drastically change its resistance to 

permanent deformations. 

There are several issues not yet fully resolved for predicting rutting in the asphalt 

concrete layers in flexible and composite pavement systems. There is still no clear 

consensus whether rutting is due primarily to axial permanent strains beneath the tire 

centerline or to shear permanent strains beneath the tire edge. Current M-E rutting models 

relate permanent strains (axial or shear) to resilient strains computed using multilayer 

elastic theory. However, in the absence of correction factors, rutting predicted from these 

resilient strains is in sharp disagreement with field observations. Thickness or depth 
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correction factors are required to bring predictions in line with observations, which 

significantly weaken the mechanistic linkage between computed strains and predicted 

rutting. Current M-E models often assume that the mechanisms and distributions of 

permanent strains are similar for asphalt concrete layers in any pavement type (e.g., 

flexible pavements versus overlays on rigid pavements), which is generally not true. And 

finally, current M-E models are not capable of predicting the entire rutting profile, which 

includes the settlement at the center of the wheel path and side heaves at the edge of the 

wheel paths. 

Moreover, multidimensional confinement and plastic flow interactions, which 

intuitively should strongly influence the permanent deformation response, are treated 

only in a very approximate way via the empirical thickness/depth corrections in M-E 

models. There are simpler alternatives based on nonlinear constitutive models, such as 

elasto-plasticity, that are capable of qualitatively correcting these discrepancies, but are 

not capable of fully addressing the behavior of asphalt concrete mixtures. 

Advanced mechanistic modeling employs theories of mechanics that are more 

suitable for describing the real material behavior. A major shortcoming is the complexity 

of these theories, and in particular the constitutive models. The constitutive model is the 

mathematical formulation representing the relationship between stresses, strains, and 

temperatures (and perhaps other state variables) that governs the material deformation 

under induced load and environmental conditions. 

Asphalt concrete is a complex material in which recoverable and irrecoverable 

strains are dependent on temperature, stress and strain rates. Therefore, viscoelasticity 

and viscoplasticity theories are most appropriate to model the recoverable and 
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irrecoverable behavior respectively. The use of advanced mechanistic modeling 

implemented in a more rigorously nonlinear finite element model can help address some 

of the issues mentioned and reduce the gap between rutting predictions and field 

measured performance. 

1.2. Objective 

The objective of this research is to implement an advanced constitutive model in a 

finite element analysis framework to predict permanent deformation in asphalt concrete 

pavements. The model, developed in previous research, is based on Schapery’s 

viscoelasticity and Perzyna’s viscoplasticity theories. 

To achieve this objective, the model formulation is reviewed. Laboratory testing 

of a modified asphalt concrete mixture used in the Federal Highway Administration’s 

full-scale Accelerated Loading Facility (ALF) is used to calibrate and validate the model. 

A particular focus of the calibration is the viscoplastic model component, which is the 

most relevant for the rutting problem. Two calibration procedures are tried, one using a 

research-grade creep and recovery test designed specifically for this research, and one 

using the Flow Number test intended for routine mix design evaluation. The calibrated 

model is implemented as a user defined material constitutive model in the commercial 

finite element package ABAQUS™. 

The finite element model is used to simulate a moving wheel and to analyze the 

permanent deformation behavior in the asphalt concrete layer in three dimensional 

pavement structures. The results are compared with the widely used bouncing wheel 

loading, which is the most typical simplification of traffic loading in pavement analyzes. 
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In addition, different pavement structures are evaluated. The results are used to evaluate 

the depth correction functions used in the AASHTO’s Mechanistic-Empirical Pavement 

Design Guide (MEPDG). Finally, the model is used to predict rutting in one of the 

FHWA’s ALF tests. This predicted rutting is compared against field measurements. 

1.3. Document Layout 

The dissertation is organized as follows. Asphalt concrete permanent deformation 

modeling techniques are described in Chapter 2, including a brief overview of past 

empirical models and description of more recent mechanistic-empirical models. 

Advantages and pitfalls observed in current models are discussed in greater detail and 

advanced modeling is introduced as an alternative to overcome some of these pitfalls. 

Chapter 2 concludes with a theoretical description of the viscoelastic-viscoplastic 

(VEVP) model used in this research. Chapter 3 describes the material and the laboratory 

equipment used to calibrate the VEVP model. The calibration process is provided in 

Chapter 4, in which laboratory tests, calibration techniques and results are discussed. 

Chapter 5 presents the implementation of the VEVP constitutive model as a user defined 

material model in ABAQUS™ finite element software. Numerical applications of the 

finite element model are provided in Chapter 6. A simplified finite element model is 

introduced. The importance of considering traffic loading as a moving wheel instead of 

bouncing wheel – typically used to represent traffic loading – is discussed. Two practical 

applications of the finite element model are also presented. Chapter 6 concludes with the 

description and simulation of an accelerated field pavement testing using the finite 
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element model. The overall summary, conclusions and recommendations from this 

research are presented in Chapter 7. 
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Chapter 2   Modeling Permanent Deformation of Asphalt Concrete 

2.1. Introduction 

Rutting is a major distress in flexible pavements. Changes in traffic conditions, 

mainly in tire and axle configurations, contributed significantly to make rutting a 

predominant mode of failure of flexible pavements in the 1980s and 90s. Rutting is 

defined as a longitudinal surface depression occurring in the wheel paths of roadways 

(FHWA, 2003). It is often followed in later stages by an upheaval along the sides of the 

rut. It can lead to structural failure and potential danger from hydroplaning. Rutting 

accumulates continuously and incrementally with small permanent deformations from 

each load application. Rutting is by definition a load-related pavement distress. 

There are many techniques for measuring permanent deformations at the surface 

of the pavement layer. One of the simplest approaches is to use a straightedge, as shown 

in Figure 1. The total measured rutting is a combination of the settlement in the center 

and the heave at the edges of the wheel path. Although traffic wander tends to reduce the 

heave at the edges of the wheel path, it can be a prominent feature in heavily rutted 

pavements, especially in combination with channelized traffic. 

 

Figure 1. Components of measured surface rutting. 

Straightedge

Heave

Settlement

Straightedge

Heave

Settlement
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The total rutting is the combination of accumulated permanent deformation in all 

layers in the pavement structure. Some research suggests that the shape of the surface 

profile can indicate which layer is responsible for the failure of the pavement structure 

due to rutting (Simpson et al., 1995; White et al., 2002). Figure 2 shows three transverse 

profiles typical of three different scenarios in which majority of rutting comes from (a) 

asphalt concrete surface layer, (b) granular base and (c) subbase/subgrade. If the majority 

of rutting originates in the underlying unbound base and subbase layers, little or no heave 

is observed. When the asphalt concrete layer is responsible for total rutting, heave is 

observed. In extreme situations of very stiff underlying layers – e.g., composite pavement 

with a Portland cement (PCC) slab acting as a base layer – the heave may dominate the 

settlement portion. The majority of the failures from rutting are due to excessive 

deformation in the asphalt concrete layer (White et al., 2002). 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Effects of rutting concentration in different layers on permanent deformation 
surface profile of flexible pavements: (a) asphalt concrete, (b) granular base, and (c) 

subbase/subgrade (White et al., 2002) 
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Forensic trenches are the preferred approach for determining the permanent 

deformation in each layer. However, very few field pavement test sites have been 

trenched. Test tracks such as Westrack and MnRoad are the best sources for trench data. 

Researchers found that nearly all of the total rutting occurred within the top 150 mm of 

HMA at Westrack (Epps et al. 2002). Additional detailed data from the MnRoad test 

sections, where permanent deformations were measured for every 40 to 50 mm of the 

asphalt layer, further suggests that most of the rutting occurs within the top 100 to 150 

mm of the surface layer (Mulvaney and Worel, 2002). 

Two mechanisms are the main causes of rutting development. Compaction is the 

primary mechanism at initial stages of loading. Compaction (i.e., densification) occurs as 

the material volume decreases underneath the wheel path with no significant upheaval 

along the sides of the wheel path. After this initial stage is complete, further volume 

decrease of material beneath the wheel path at each load application approximately 

equals the volume increase in the upheaval along the sides. This deformation mode is 

essentially caused by shear (i.e., distortion without volume alteration). When enough 

distortion has occurred, the asphalt concrete undergoes shear flow and deformations 

increase rapidly at an increasing rate termed tertiary flow. Figure 3 depicts rutting 

development versus load application in which region 1 is mainly caused by material 

densification, region 2 is predominately shear deformations, and region 3 is tertiary flow 

to shear failure. 

The primary stage, represented by region 1 in Figure 3, happens early on in the 

pavement’s service life, usually within the first year. The pavement will probably be 

rehabilitated prior to reaching the tertiary stage (region 3) due to rutting already reaching 
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the agency’s threshold or another distress triggering the need for maintenance. Therefore, 

rutting modeling is usually restricted to the secondary stage (region 2). 

 

 

Figure 3. Rutting development versus load applications. 

Three types of model are used to compute permanent deformations: empirical, 

mechanistic-empirical and fully mechanistic. Examples of empirical models are 

regression equations fitted to observed field data. They are often the simplest 

mathematical form for representing relationships in the data. They often include no 

material related properties or site parameters and are commonly used in specific 

applications such as performance predictions in pavement management systems. The 

intention in these cases is to estimate future performance based solely on the recorded 

distress history as a mere extrapolation. 

Mechanistic-empirical models (ME) are developed based on a combination of 

simple mechanistic response predictions (i.e., often using elasticity theory) with empirical 

equations calibrated using laboratory testing in which stress conditions representing field 

conditions are replicated. The calculated mechanistic response is used as input in the 
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empirical model, also called transfer function, to predict field performance (e.g., rutting, 

cracking). The influence of temperature and loading conditions (e.g., frequency) can be 

incorporated. During application, the mechanistic portion of the model is obtained 

through a structural analysis of the pavement subjected to traffic loading and 

environmental inputs. Linear elasticity is often used for its relatively simple formulation 

and fast computer calculations. 

Fully mechanistic models also use a structural analysis program to evaluate the 

stresses and strains in the pavement structure due to traffic loading and environmental 

conditions. Complex constitutive models are used to represent the different aspects of 

material behavior and to directly predict permanent deformations, cracking and other 

distresses. With the vast capabilities of the mechanistic approach, the influence of 

different load conditions (e.g., duration, magnitude and temperature) can be easily 

evaluated and incorporated directly into the constitutive model. Since mechanistic models 

are capable of directly predicting pavement distresses, there is no need for empirical 

transfer functions. However, mechanistic models are complex, expensive to calibrate, and 

computationally expensive to execute. Few researches have been done to implement 

mechanistic models to predict asphalt concrete behavior. Applied mechanistic modeling 

is still ahead of the frontline of research. 

2.2. Mechanistic-Empirical Modeling 

Early attempts to model rutting date to the 1950’s, when Kerkhoven and Dormon 

(1953) first suggested the use of vertical compressive strain on the top of the subgrade as 

a failure criterion to minimize permanent deformation. Dormon and Metcalf (1965) 
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incorporated strain-based criteria in a mechanistic-empirical procedure using 1940’s 

Burmister multi-layer linear elastic solutions. Later, this criterion was used as part of the 

Asphalt Institute design method (Shook et al., 1982). The classic pavement design 

approach considered Kerkhoven and Dormon’s failure criterion for rutting and a similar 

one for fatigue cracking (i.e., the tensile strain at the bottom of the surface asphalt 

concrete layer). The rutting shear resistance of the asphalt concrete was considered only 

in the mix design, through the Marshal method. 

Following test track experiments from the 1950’s and 1960’s, including the 

AASHO Road Test, researchers developed rutting models based on regression analysis of 

observed field data. Finn et al. (1977) developed a rutting regression model relating 

surface deflection to the vertical compressive stress in the asphalt concrete layer. 

Claussen et al. (1977) developed an empirical rutting model based on subgrade vertical 

strain, which was incorporated into the Shell pavement design procedure. 

At this same time there were initial efforts to develop models based on laboratory 

tests that could provide a better representation of the loading condition in the field. One 

of the first models developed incorporated results from unconfined repeated load 

permanent deformation (RLPD) tests and was implemented in the VESYS program 

(Kenis et al., 1977). This followed work done previously with granular base materials and 

soils done by Barksdale (1972) and Monismith (1975). Moreover, this model formulation 

was the first to describe asphalt concrete rutting as power law: 

 
 p N N      (1) 

in which p(N) is the incremental permanent vertical strain caused by the Nth load cycle, 

 is the mechanistically-computed peak total vertical strain (usually taken as the resilient 
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strain, e), and  and  are material parameters determined from laboratory RLPD tests. 

The VESYS model is considered the predecessor of the current power law models. This 

type of model is particularly useful because it fits quite well the secondary stage of 

rutting behavior (i.e. linear in log-log space). 

Repeated load permanent deformation testing became a typical laboratory 

procedure for characterizing rutting behavior of asphalt mixtures. Allen and Deen (1980) 

developed a regression model based on unconfined RLPD with different deviator stresses 

and temperatures. The third order polynomial model resulting from the regression 

analysis had the following general form: 

        2 3

0 1 2 3log log log logp C C N C N C N      (2) 

Rauhut (1980) presented some quantitative influence of mixture type and deviator 

stress on  and  in Eq. (1) based on limited unconfined RLPD data analysis. Leahy 

(1989) increased the number of experiments and enhanced these correlations including 

temperature and some material characteristics (i.e., effective binder content, air voids and 

binder viscosity). Over 250 asphalt concrete specimens encompassing two aggregate 

types, two binder types, three binder contents, three stress levels, and three temperatures 

were tested. The model formulation is as follows: 

 abeff

d
r

p

VV

TN

log501.0log930.0log118.0

log110.0log767.2log435.0631.6log


















 (3) 

in which εp is the permanent strain, εr is the resilient strain, N is number of load cycles, T 

is temperature (° F), σd is deviatoric stress (psi), η is binder viscosity at 70oF (x106 poise), 
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Vbeff is effective binder volume and Va is air voids. The R-squared value for Eq. (3) was 

0.76. 

Ayres (1997) re-analyzed Leahy’s original data plus additional laboratory test 

data and recommended a model of the form: 

 
log 4.8066 0.4296 log 2.5816 logp

r

N T



 
    

 
 (4) 

in which the parameters are as defined previously for Eq. (3). The slightly lower R2 of 

0.72 for this model is the consequence of removing four mix-related parameters from the 

Leahy model, Eq. (3). This small drop confirmed the relatively small importance of these 

parameters as compared to temperature and number of load repetitions. 

Kaloush (2001) further improved the rutting model in Eq. (4) by combining 

Leahy’s original data with the very large number of repeated load permanent deformation 

test results from NCHRP Project 9-19, yielding a revised model of the form: 

 
log 3.1555 0.3994 log 1.7340 logp

r

N T



 
    

 
 (5) 

in which the parameters are as defined previously. The lower R2 value of 0.64 compared 

to Ayres’ was attributed to the much broader and more diverse data set analyzed by 

Kaloush (El-Basyouny, 2004). Kaloush’s regression model was the starting point for the 

rutting model implemented in the newly developed Mechanistic –Empirical Pavement 

Design Guide (MEPDG) (NCHRP, 2004). 

Field calibration of Eq. (5) was performed as part of the MEPDG development in 

NCHRP Project 1-37A. The Long Term Pavement Performance (LTPP) database was the 

main source of data for the calibration (El-Basyouny, 2004). Recent work done under 

NCHRP Project 1-40D (NCHRP 1-40D, 2006) revised the field calibration, producing 
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the rutting model implemented in the most recent version of the MEPDG software 

(version 1.1): 

 

3.3542 1.5606 0.479210p

r

T N



     (6) 

in which all variables are defined as previously. 

The database underlying Eq. (3) through Eq. (5) is based only on unconfined 

conditions. In reality, substantial horizontal stresses develop in an asphalt layer during 

wheel loading/unloading, ranging from compression at the top to tension at the bottom 

(assuming a linear elastic asphalt concrete response) and varying through the HMA 

thickness. A depth correction factor was developed in the MEPDG to adjust the 

computed plastic strain due to confining pressure at different depths: 

 
depthdepthCC 328196.0)( 213   

 342.174868.21039.0 2
1  ACAC hhC  (7) 

 428.277331.10172.0 2
2  ACAC hhC  

in which depth is depth to the computational point of strain calculation, and hAC is the 

thickness of the asphalt layer. The final rutting model, including the depth factor is: 

 

3.3542 1.5606 0.4792
3 10p

r

T N





     (8) 

Another variation of the elastic vertical strain power law model was proposed by 

Verstraeten (1977, 1982). In this model, the vertical elastic strain is replaced by the ratio 

between deviatoric stress and the dynamic modulus of the mixture: 

 

1 3
* 1000

ACb

p

N
A

fE

 
 

  
 

 (9) 
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in which, εp is the permanent shear strain, σ
1
 and σ

3
 are respectively vertical and radial 

stresses, |E*| is the dynamic modulus of HMA mixture, N is the number of load cycles, f 

is the frequency of loads, A and bAC are material parameters. Temperature is also 

implicitly included in Eq. (9) through its influence on dynamic modulus. For 

conventional mixtures, the recommended values for the regression coefficients are 

A=57.5 and bAC=0.25 (D’Apuzzo et al., 2004). It is unclear from the references how A 

and bAC are determined. However it seems plausible to assume that RLPD tests would 

suffice in determine these calibration coefficients. The inclusion of load frequency as a 

normalizing factor for the number of load application makes this model different from the 

VESYS power law model. 

An alternative type of empirical model relates permanent deformation to 

maximum shear strains observed in the asphalt concrete surface layer. Researchers at the 

Westrack developed this type of model, which excludes densification and assumes shear 

deformations as the solely rutting mechanism (Monismith et al., 2006). Shear plastic 

strains are computed using a power law model, which considers the number of load 

applications and the elastic shear strains as follows: 

 
c

e
b

p Nae    (10) 

in which γp is the permanent shear strain,   is mechanistically-determined elastic shear 

stress, γe is the mechanistically-determined elastic shear strain, and a, b, and c are 

material parameters. The maximum elastic shear stress and strain are expected to be 

located at the edge of the tire at a depth of 2 inches below the surface. This location was 

defined based on elastic analysis of two-layer structures with different load conditions 

and asphalt concrete stiffness (Sousa et al., 1994). 
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The mechanistically computed elastic shear strain, γe,t, varies over time in 

response to traffic variations and influence of temperature on the asphalt concrete 

stiffness. A time-hardening principle similar to that implemented in the MEPDG is used 

to estimate the accumulation of permanent strains in the asphalt concrete under varying 

traffic loading conditions: 

  ,1 1 1

c

p a N    

 

1

, 1
,

c

c
p t

p t t t
t

a N
a


 

 
           

(11) 

 te
b

t aea ,  

in which γe,t is the elastic shear strain for the tth period of loading, γp,t is the corresponding 

permanent shear strain, and ΔNt is the number of load applications during the tth period. 

The total rut depth in the asphalt concrete layer is estimated from the permanent 

shear strain using the following semi-empirical relation: 

 ,HMA r p tRD K   (12) 

in which Kr is a coefficient relating rut depth to permanent strain. Kr is a function of the 

asphalt layer thickness; values for Kr are determined from finite element analyses of 

representative pavement structures range from about 5.5 for a 6 inch layer to 10 for a 12 

inch layer (Deacon et al., 2002). 

The regression coefficients a, b, and c in Eq. (10) and Eq. (11) are determined 

from repeated load simple shear tests conducted at constant height (RSST-CH). 

Monismith et al. (2006) describe the calibration process in greater detail. The model 

scheme was developed, calibrated, and validated for the Westrack sections. Mixtures 
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commonly used by Caltrans have also been calibrated using RSST-CH test data and 

validated using Heavy Vehicle Simulation (HVS) full scale accelerated pavement testing 

system. 

2.2.1. Mechanistic-Empirical Modeling Limitations 

There are significant limitations to the use of mechanistic-empirical models to 

predict permanent deformation in flexible pavements. The most fundamental limitation 

relies on the simple definition of an empirical relationship—i.e., the use of observed 

experimentation instead of theory to model a phenomenon. The practical implication is 

that purely empirical models are generally not applicable to conditions that are 

significantly different from used for the model calibration. 

The incorporation of mechanistic responses reduces the limitations by making the 

model dependent on pavement stress and or strain response that can be calculated for 

each desired condition. Unfortunately, this improvement also has limitations and 

shortfalls. The most basic limitation involves the choice of stress conditions from which 

the model has been calibrated and how they compare to actual stress states in the field, 

which brings back the problem of conditions during calibration versus design/service. An 

example of this is the development of rutting prediction models based on unconfined 

repeated load testing performed in the laboratory. In the field the material is constantly 

subjected to varying confining stresses that drastically change the resistance to permanent 

deformations. 

The methods for determining the required mechanistic responses are another 

important source of limitation in mechanistic-empirical models. Linear elastic multilayer 
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theory is most often used to compute the mechanistic responses because it is easy to 

implement in computer algorithms and comparatively fast to execute. However, this 

simplification brings many shortfalls. 

The mechanistic strains vary with depth and horizontal location within the HMA 

layers. The specific variation will be a function of the pavement structure, material 

properties, load configuration, and other factors. M-E rutting models must rationally 

account for these strain variations within the HMA and other pavement layers when 

accumulating the predicted permanent deformation at the surface. Empirical calibration 

factors attempt to bring the predicted surface deformations into better agreement with 

measured field performance over a wide range of pavement conditions. 

There are several issues not yet fully resolved in this framework for predicting 

rutting in the asphalt concrete layers in flexible and composite pavement systems. First, 

there is still no clear consensus whether rutting is due primarily to axial permanent strains 

beneath the tire centerline (e.g., NCHRP, 2004; D’Apuzzo et al., 2004) or to shear 

permanent strains beneath the tire edge (e.g., Deacon et al., 2002; Monismith et al., 

2006). Second, current M-E rutting models relate permanent strains (axial or shear) to 

resilient strains computed using multilayer elastic theory. However, in the absence of 

correction factors, the influence of layer thickness on the rutting predicted from these 

resilient strains is in sharp disagreement with field observations. Thickness or depth 

correction factors are required to bring predictions in line with observations. These 

correction factors further weaken the mechanistic linkage between predicted rutting and 

computed strains in the M-E approach. Third, current M-E models often assume that the 

mechanisms and distributions of permanent strains are similar for HMA layers in flexible 
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pavements vs. HMA overlays on rigid pavements, which is generally not true. And 

fourth, current M-E models do not explicitly consider the contribution of heaving at the 

edge of the wheel paths (see Figure 1), although this may be implicitly included in the 

field calibration corrections, given how rutting measurements are taken in the field. 

Both the MEPDG depth function βσ3 in Eq. (6) and the Westrack Kr factor in Eq. 

(12) can be viewed as attempts to compensate for deficiencies in using linearly elastic 

stress and strain distributions to estimate permanent deformations. Figure 4 compares the 

variations of the uncorrected versus corrected permanent strains from the MEPDG model. 

(Note: The standard mechanics sign convention of positive tension applies to this figure.) 

As dictated by Eq. (6), the uncorrected computed permanent strains are proportional to 

the mechanistically determined vertical resilient strains, which are largest at the bottom 

of the HMA layer due to the combination of the direct vertical compression and the 

compressive Poisson strains induced by the horizontal tensions. As a consequence, the 

permanent deformations are concentrated in the lower depths of the HMA layer contrary 

to field experience. The empirical depth correction function distorts both the magnitude 

and shape of the permanent strain distribution as it attempts to force the majority of the 

permanent deformations into the upper portions of the HMA layer. The depth correction 

function dominates the permanent strain values used to compute the total rutting for the 

layer and, in the process, seriously undermines the “mechanistic” portion of the 

modeling. 
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Figure 4. Influence of depth function βσ3 on calculated permanent vertical strains from 
the MEPDG model (150 mm HMA layer over crushed stone base, first load cycle). 

The lack on of influence of pavement structure on predictions of mechanistic-

empirical models can be demonstrated by using a simple finite element exercise 

(Schwartz and Carvalho, 2007 and 2008). One typical flexible pavement was modeled 

using an elasto-plastic finite element model (EPFE). The HMA layer was modeled as an 

elasto-plastic material using the Drucker-Prager frictional plasticity model with a linear 

yield surface and an isotropic piecewise linear hardening law. The other materials were 

modeled as linear elastic. A fully elastic finite element analysis was also performed for 

comparison. 

The impact of plastic yielding on the vertical and horizontal total strains in the 

HMA layer is shown in Figure 5 for the conventional flexible pavement case. The 

vertical compressive strains beneath the tire center (Figure 5a) from the elastic analysis 

monotonically increase with depth. These are the resilient strains r that are the input for 

Eq. (6). Consequently, the permanent strains from Eq. (6) will also increase 

monotonically with depth. The accumulated rutting will therefore be concentrated in the 
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lower portion of the HMA layer, which as described previously is contrary to field 

experience. The corresponding vertical compressive strains from the plastic analysis, on 

the other hand, deviate from the elastic strains in the correct direction, at least 

qualitatively, with the peak strain occurring near the center of the layer at a depth of 

about 60 mm. However, rutting in this case is still concentrated at the bottom of the HMA 

layer. For both analyses, the horizontal strains (Figure 5b) increase monotonically from 

compression to tension with depth, with the strains from the plastic analysis larger than 

those from the elastic case, as expected. 

 

(a)     (b) 

Figure 5. Computed total strains beneath tire center at peak load: (a) vertical; (b) 
horizontal (Schwartz and Carvalho, 2008). 

Elastic stresses and strains at peak load are the inputs to the rutting models in the 

M-E prediction methodology. However, rutting in physical terms is the permanent 

deformation remaining after removal of the load. An examination of the residual strains 

after unloading is therefore instructive. These residual strains for the EPFE analysis are 

depicted in Figure 6 (the residual stresses and strains for the elastic analysis are zero by 

definition). The vertical permanent compressive strains after unloading increase with 
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depth until about 100 mm, after which they decrease sharply and eventually become 

tensile. The yielding at the bottom of the HMA layer results in residual horizontal 

compressive stresses after unloading. This residual horizontal compression induces 

expansive vertical strains—i.e., a decrease in the residual vertical compression--due to 

the Poisson effect. The residual permanent deformations resulting from this strain 

distribution will be concentrated in the upper portion of the HMA layer, in better 

agreement with field experience. No additional depth correction function is required to 

bring analysis results into qualitative alignment with physical expectations. 

 

Figure 6. Residual total strains from the EPFE analysis after removal of load. 

Another noteworthy feature of the EPFE analysis results is the accumulation of 

incremental permanent deformations over multiple load cycles. Conventional wisdom 

often purports that a straightforward strain-hardening plasticity analysis of a constant 

amplitude cyclic tire loading should produce all permanent deformations in just the first 

load cycle; since all subsequent load cycles are to the same load magnitude, no additional 

plastic yielding and/or deformations should develop in the subsequent cycles. As shown 
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in Figure 7, however, this is not the case. Additional plastic deformations develop in each 

load cycle, with diminishing magnitude in each successive cycle. The location of 

maximum residual strain also moves upward in the layer, bringing the distribution in 

even better agreement with field observations. The locked-in residual horizontal stresses 

that are the consequence of plastic yielding at the bottom of the HMA layer introduce 

stress reversals that produce additional plastic yielding and permanent deformation with 

each successive load cycle. 

 

Figure 7. Residual total vertical strains beneath the tire center from EPFE analyses for 
different number of cycles. 

Clearly, the empirical permanent deformation laws described earlier have only a 

very distant relationship to a realistic nonlinear constitutive response of HMA. 

Multidimensional confinement and plastic flow interactions, which intuitively should 

strongly influence the permanent deformation response, are treated only in a very 

approximate way via the empirical thickness/depth corrections. Simple nonlinear 

constitutive models based on elasto-plasticity are capable of qualitatively correcting these 

discrepancies. Therefore, these issues and others can be more rigorously addressed via 
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nonlinear finite element analysis incorporating more realistic constitutive models for the 

HMA. 

2.3. Asphalt Concrete Mechanistic Modeling 

Advanced mechanistic modeling employs theories of mechanics that are more 

suitable to describe the real material behavior. The shortcoming is the complexity of 

these theories, and in particular the constitutive models. The constitutive model is the 

mathematical formulation representing the relationship between stresses, strains, and 

temperatures (and perhaps other state variables), and governs the material deformation 

under induced load and variations of temperature. Asphalt concrete is a complex material 

in which recoverable and irrecoverable strains are dependent on temperature, stress and 

strain rates. Therefore, viscoelasticity and viscoplasticity theories are most appropriate to 

model the recoverable and irrecoverable behavior respectively. 

The constitutive model used in this research is based on Schapery’s nonlinear 

viscoelastic continuum damage constitutive theory (Schapery, 1984). This theory has 

been used extensively in previous research to describe the recoverable portion of the 

deformation. Kim and Little (1990) used a one-dimensional formulation to describe the 

experimental behavior of asphalt concrete under cyclic strain loading. Park and Schapery 

(1997) also used a viscoelastic continuum damage uniaxial formulation to model creep in 

solid fuel propellants, while Ha and Schapery (1998) expanded this formulation into a 

comprehensive multiaxial model. Recently, several other researchers have used 

Schapery’s nonlinear continuum damage viscoelastic model for predicting the 
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recoverable response of asphalt materials (Lee and Kim, 1998; Daniel and Kim, 2002; 

Gibson, 2006; Huang et al., 2007; Masad et al., 2008; Huang et al., 2011a, 2011b). 

There are many approaches for modeling the irrecoverable response of asphalt 

concrete. Often very simple nonlinear modeling can be used with good results, such as 

the elasto-plastic analyses described in the previous section. Models based on rate-

dependent plasticity and creep are found in the literature as well (Perl et al., 1983; Fang et 

al., 2004). However Perzyna’s theory of viscoplasticity is the most common approach 

used to model asphalt concrete mixtures. The many instances of it in the literature differ 

primarily in the choice of the yield function, type of flow, and anisotropic effects (Lu and 

Wright, 1998; Gibson, 2006; Masad et al., 2007; Huang, 2008; Huang et al., 2011a, 

2011b). In this research, the Perzyna based viscoplastic with the Hierarchical Single 

Surface (HiSS) yield function model and associated plastic flow is used (Gibson, 2006). 

The key conceptual components that govern the complex behavior of asphalt 

concrete are: (1) viscoelasticity, (2) microstructural damage and (3) strain-hardening 

viscoplasticity. The viscoelasticity governs the behavior before plastic yielding occurs. 

Microstructural damage accounts for changes in the structure due to the formation of 

microcracks and is expressed in terms of rate-dependent internal state variables. And 

finally, the strain-hardening viscoplastic model is responsible for determining the plastic 

deformations (post-yield behavior) and the rate of deformation as the material hardens. 

Therefore total strains may be separated into viscoelastic, viscoplastic and damage strains 

as follows: 

 t ve d vp     
 (13)
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in which t is the total strain, ve is the viscoelastic strain, d is the damage strain, and vp 

is the viscoplastic strain. 

The viscoelastic strain is assumed to be linear and independent of stress state and 

damage. The viscoelastic strain is solely dependent on rate of loading and temperature, 

which for thermorheologically simple materials can be interchanged using time-

temperature superposition. Asphalt concrete is commonly assumed to be 

thermorheologically simple under small strain (<100με) linear viscoelastic conditions. 

Although these factors are expected to have direct effect on the magnitudes of the time-

dependent computed internal state variables and on the magnitudes of the damage strain, 

it is assumed that the effects of loading rate and temperature can be interchanged using 

conventional time-temperature superposition as well. 

It is also assumed that the effects of loading time and temperature on viscoplastic 

strains can be interchanged using a generalized time-temperature superposition. Previous 

research has shown that the temperature shift function developed for small strain 

conditions is also valid, at least for engineering purposes, at larger strain levels of interest 

in pavement analyses (Chehab et al., 2002; Gibson, 2006). This immensely simplifies the 

laboratory testing program for calibrating the model. 

2.3.1. Linear Viscoelastic Behavior 

Linear viscoelastic (LVE) materials exhibit elastic and viscous linear behavior. 

The elastic component is responsible for the instant response to loading, while the 

viscous component is responsible for time- and rate-dependent effects. The linear 

characteristic means that stresses and strains responses can be superimposed. Complex 
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loading conditions can be broken down into simpler loading configurations and 

superimposed to achieve the same outcome. 

The constitutive relationships for LVE materials are commonly expressed by the 

following convolution integrals: 

  
0

t d
E t d

d

  


   (14) 

  
0

t d
D t d

d

  


   (15) 

in which E(t) and D(t) are the relaxation modulus and creep compliance respectively, σ is 

stress, and  is strain. The relaxation modulus is usually obtained through a relaxation 

test, which consists of applying a prescribed fixed strain and observing the material relax 

from the initial induced stress. The relaxation modulus is simply defined as: 

    
0

t
E t




  (16) 

in which σ(t) is the induced stress at a given time and 0 is the prescribed constant strain 

applied to the specimen.  

Conversely, creep compliance is usually obtained from a creep test in which the 

specimen is subjected to a prescribed constant stress and the strain increase over time is 

observed. The creep compliance is then defined as: 

    
0

t
D t




  (17) 

in which (t) is the induced strain at a given time and σ0 is the prescribed constant stress 

applied to the specimen.  
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Since relaxation modulus and creep compliance are just alternate representations 

of the same underlying viscoelastic behavior, they are related as follows: 

     1E t D t      (18) 

Viscoelastic calculations can be simplified by applying two important 

fundamental principles. Time-temperature superposition, as mentioned before, permits 

the effects of time and temperature to be interchanged through a shift factor. The other 

important simplification is the use of the correspondence principle, which states that the 

time dependence inherent in viscoelastic problems can be removed when physical strains 

are replaced by pseudo strains defined as follows: 

  
0

1 t

R
R

d
E t d

E d

  


   (19) 

 R RE   (20) 

in which R is the pseudo strain, ER is a reference modulus, typically taken as one, and 

E(t) is the relaxation modulus defined earlier. In addition, recoverable nonlinear behavior 

can be incorporated through a microstructural damage component, which can be 

conveniently computed using the correspondence principle, as further detailed in the next 

section. These simplifications greatly expedite the laboratory testing and calculations 

required to calibrate the model. 

The generalized Maxwell model can be used to represent the relaxation modulus. 

The generalized Maxwell model consists of a series of dashpots and springs connected in 

parallel, as shown in Figure 8. The material constants Ei and ρi correspond respectively to 

the stiffness of each Maxwell spring and the relaxation times of each dashpot. The 

generalized Maxwell model provides a good fit to the observed behavior of a wide range 
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of viscoelastic materials. A Prony series can be conveniently used to represent the 

relaxation modulus in the generalized Maxwell model (Park and Schapery, 1999): 

   0
1

i

tm

i
i

E t E E e 




   (21) 

in which E0 is the long term equilibrium modulus, Ei and ρi are the elastic springs and 

relaxation times for the elements in the generalized Maxwell model, and m represents the 

number of Maxwell components in the generalized model. A great advantage of the 

Prony series representation of the relaxation modulus is its fairly simple implementation 

in algorithms. In combination with recursive algorithms or evaluating the convolution 

integral in Eq. (19), this mathematical model of the viscoelastic behavior is very 

attractive from the computation standpoint. 

In a similar fashion, creep compliance can also be conveniently modeled using a 

Prony series as follows: 

   0
1

i

tm

i
i

D t D D e 




   (22) 

in which the unknown compliance constants (D0, τj, Dj) can be expressed in terms of the 

known relaxation constants of Eq. (21) – E0, ρi, Ei-- by using a technique developed by 

Park and Schapery (1999). 
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Figure 8. Generalized Maxwell model. 

The principal viscoelastic properties required for the Schapery model are the 

Prony series terms for the relaxation modulus and the temperature shift function for the 

time-temperature superposition. With these two properties, one can model any type of 

loading (stress or displacement induced) at any rate and any temperature. The complex 

modulus test can be used to determine both properties from one single laboratory test. 

Complex Modulus 

The complex modulus is defined as the ratio of dynamic stress to dynamic strain 

under sinusoidal loading. The prescribed stress and induced strain can be represented by 

the following equations: 
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in which σ0 is the dynamic stress amplitude, ε0 is the dynamic strain amplitude, ω is the 

loading frequency, and φ is the phase angle or strain lag, as shown in Figure 9. Based on 

Eq. (23), the complex modulus is defined as: 

  * 0 0

0 0

cos siniE e i E iE   
 

      ” (24) 

in which the storage modulus, E', and loss modulus, E'', represent the real and imaginary 

components. 

 

Figure 9. Complex modulus response. 

The dynamic modulus, |E*|, defined as the ratio of the dynamic stress amplitude 

to the dynamic strain amplitude, is related to the storage and loss moduli as follows: 
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Dynamic modulus is the most common way to characterize the viscoelastic 

behavior of asphalt concrete mixtures in practice. It is also the main HMA material 

property in the Mechanistic-Empirical Pavement Design Guide (MEPDG). 

The generalized Maxwell model can be fit to the storage and loss moduli in the 

frequency domain through a Prony series: 
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
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  


 





 (27) 

in which Ei are the elastic spring constants and ρi are the relaxation times for the m 

elements in the generalized Maxwell model. These terms are the same as defined for the 

relaxation modulus Prony series in Eq. (21). 

Time-Temperature Superposition 

The effects of temperature and rate of loading on the viscoelastic properties of 

asphalt concrete can be interchanged using the time-temperature superposition principle. 

A master stiffness curve is formed by shifting the dynamic modulus data measured at 

different temperatures to a unified reference temperature. The amount of shifting at each 

temperature required to align the data along the common master curve describes the 

temperature dependency of the material. The master curve is described in terms of 

reduced frequency, which in turn is computed based on the temperature shift factors, as 

follows: 

  r a T    (28) 
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in which ωr is the reduced frequency, ω is the test frequency, a(T) is the temperature shift 

factor at temperature T. An example of a master curve is provided in Figure 10. The 

temperature shift factors used to create the master curve are provided in Figure 11. 

 

Figure 10. Example of master curve. 

 

Figure 11. Example of temperature shift function. 
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The master curve in Figure 10 can be described using a sigmoidal logistic 

function as follows: 

  
*

log
log

1 r
E

e  




 


 (29) 

in which |E*| is the dynamic modulus, ωr is the reduced frequency, δ is the minimum 

value of |E*| (often called the lower shelf), δ + α is maximum value of |E*| (often called 

the upper shelf), and β and γ are fitting parameters describing the horizontal location and 

slope of the transition region. Research has shown that δ and α parameters depend 

primarily on binder content, air void content, and aggregate gradation while the β and γ 

parameters depend on the viscosity characteristics of the asphalt binder (Bonaquist, 

2008). 

2.3.2. Viscoelastic Continuum Damage Behavior 

The continuum damage behavior is characterized by macroscale stiffness 

reduction due to changes in the material, mostly due to the development of microcracks. 

For asphalt concrete, Schapery’s work potential theory based on thermodynamic 

principles has been used successfully for quantifying damage in HMA (Gibson, 2006; 

Kim et al, 2009). The material is assumed to be continuum and homogeneous. Although 

asphalt concrete is not homogeneous and no longer continuous after microcracks develop, 

this assumption greatly simplifies the mathematical model and it is reasonably acceptable 

for practical purposes of structural analysis. 



www.manaraa.com

 

 37 

 

Uniaxial Formulation 

Damage is incorporated into the uniaxial viscoelastic model by modifying the 

linear elastic relationship between uniaxial stress and pseudo strains described earlier in 

Eq. (20). Recall that the linear viscoelastic problem was converted into a linear elastic 

one by using the correspondence principle described in Eq. (19). Replacing the reference 

pseudo modulus term, ER, by a damage function, Eq. (20) becomes: 

   RC S   (30) 

in which σ and R are defined as previously, C(S) is a stiffness function that varies with 

material damage, and S is an internal state variable. Note that if the reference modulus is 

taken as the unity, C(S) is equal to one when there is no damage and zero for a totally 

damaged material. The variable S quantifies any microstructural changes that result in 

stiffness reduction. 

The damage evolution law governing the changes in the damage internal state 

variable, S, is defined as follows: 

 RWdS

dt S

    
 (31) 

in which α is a material property. For the uniaxial case, a pseudo work function, WR, is 

defined as: 

   21

2R RW C S   (32) 
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Assuming that the increments of time are sufficiently small, 
dS

dt
 can be replaced 

by 
S

t




 in Eq. (31) and combined with Eq. (32) to yield a discrete solution for S as 

follows: 

 2
1

1

2
i

i i R

C
S S t

S





      
 (33) 

It is assumed that there is no damage before any loading occurs and thus S equals 

zero and C equals one before loading, assuming unity value for the reference modulus. 

This numerical process requires the knowledge of the shape of the C function. An initial 

function can be assumed and through an iterative process it can be refined until small 

changes between iterations is found. A typical function for C(S) takes the form of: 

   baSC S e  (33) 

After calculating the value of damage, Si, and the incremental damage, Si+ΔS, at a 

given time step, the corresponding values of C are found using Eq. (33). The difference 

between these values (δC) is then used to calculate damage at the next time step, using 

Eq. (33). The process is repeated until all data points are processed. 

Multiaxial Formulation 

Consider first the elastic strain energy function for a transversely isotropic 

material (Schapery, 1985): 

    2 2 2 2 2 2
0 11 22 12 44 13 23 66 12

1
2

2 v d v d sW A e A e A e e A A e            (34) 
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in which 11 22 33ve      , 22 11se    , 33 3
v

d

e
e   , ij  are the engineering shear 

strains, and ijA  are the five elastic components that define the transversely isotropic 

stiffness matrix. 

Schapery suggested the axis of symmetry be oriented in the current maximum 

principal strain direction because damage is dominated by microcracks on the planes 

perpendicular to the maximum principal direction. Therefore, in uniaxial compression, 

the isotropic axis of symmetry is in the axial direction. This special case of multiaxial 

formulation can be used to determine ijA  components of the stiffness matrix. Eq. (34) can 

be simplified as follows: 

 2 2
0 11 22 12

1
2

2 v d v dW A e A e A e e      (35) 

in which 11 22  , 0se  , and 12 13 23 0     . For a symmetry axis x3, the following 

relations are derived from the strain energy function: 
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 (36) 

The stiffness matrix can be converted into a pseudo stiffness matrix for the 

viscoelastic problem using the correspondence principle. Similarly to the uniaxial 

formulation, the stiffness matrix can be replaced by a pseudo stiffness matrix that 

depends on damage. 

For determining the relationship between the components of the pseudo stiffness 

matrix and the damage functions, Schapery’s work potential theory is used. Schapery 
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presented the energy density function as a dual energy density function of a monotonic 

uniaxial loading with confining pressure, p, as follows: 

        
2

2
11 12 22

1

2 2dW C S C S p C S p


    (37) 

in which Cij are damage functions, p is the confining pressure, and  is the axial strain. 

(Note that all the formulation derived here utilizes the conventional mechanics notation 

of positive tension, with the exception of the confining pressure p which is defined as 

compression positive.) The stress-strain relations can be derived from Eq. (37) as follows: 
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 (37) 

in which 33  , and 11 22 p     in the multiaxial formulation with symmetry on 

axis x3. Combining Eq. (36) and Eq. (37) yields the following damage dependent stiffness 

components, Aij: 
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 (38) 

The stiffness component A66 was determined based on the assumption that the 

undamaged material is isotropic and therefore its value should be equal to the initial shear 

modulus, G0. Similar to the uniaxial formulation, the damage functions, Cij, are 
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dependent on one internal state variable, S. It also follows that S is defined by the same 

damage evolution law presented previously in Eq. (31). 

2.3.3. Viscoplastic Behavior 

The distinctive components of a viscoplastic constitutive model are: (a) a yield 

function, which controls the magnitude of viscoplastic flow; (b) a hardening law, which 

describes changes in the strength of the material accompanying accumulated viscoplastic 

straining; and (c) a potential function, which controls the direction of the viscoplastic 

strain increments. These components can be described conceptually in terms of the 

simply rheological model for elastic-viscoplastic behavior shown in Figure 12. 

The deformation of the spring (characterized by the elastic modulus E) represents 

the instantaneous elastic response while the deformation of the dashpot (controlled by the 

viscosity) represents the rate-dependent viscoplastic response once the yield strength Y 

of the parallel slider element has been exceeded. (The linearly elastic spring could be 

replaced by a viscoelastic spring and dashpot combination for the more general case of a 

viscoelastic-viscoplastic constitutive model.) The total strain is then just the sum of the 

elastic and viscoplastic components:  

 
  

e
 

vp
 (39) 
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Figure 12. One-dimensional elasto-viscoplastic rheological model. 

For viscoplastic strain to occur, the applied stress   must be larger than the yield 

stress, Y: 

 
f    

Y
 0  (40) 

in which 
 
f   is the yield function controlling the magnitude of viscoplastic flow. 

Typically, some type of hardening rule (or softening rule) complements the yield function 

to reflect the tendency of real materials to become stronger (or weaker) as plastic strains 

accumulate over the load duration. For example, a simple linear hardening rule for one 

dimensional loading can be expressed as: 

 


Y
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Yo
 H

vp
 (41) 

in which  Yo  is the initial yield and H is a hardening modulus.  

Once flow commences (i.e., Eq. (40) is satisfied), the viscoplastic strain rate vp  is 

governed by the viscous dashpot: 
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  (42) 

Eqs. (40) and (42) can be written in shorthand notation as: 
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       
vp

f g g
f

  
 

  
 
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 

  (43) 

in which 
 
 

1


 is a fluidity material parameter and the notation f    is interpreted as: 

   

f    f    for  f   0

f    0          for  f   0
 (44) 

The 
 
g   term in Eq. (43) is the viscoplastic potential function controlling the 

direction of plastic flow. In the simplest formulation, the plastic potential 
 
g   is set 

equal to the yield function
 
f  ; this is termed associated flow viscoplasticity. For 

associated flow viscoplasticity, Eq. (43) becomes: 
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vp
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
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

  (45) 

Equation (45) can be integrated in time to predict the viscoplastic strains 

generated by a given loading history. 

Multidimensional Perzyna Viscoplasticity 

Equation (43) is the simple uniaxial form of Perzyna’s viscoplastic constitutive 

theory (Perzyna, 1966). Perzyna’s general theory is fully multi-dimensional and broad 

enough to accommodate a wide variety of yield functions, plastic potentials, and 

hardening rules. Temperature effects, critical for asphalt concrete, can be incorporated 

into Perzyna’s theory using time-temperature superposition. Time-temperature 

superposition implies that loading time and temperature are interchangeable and that their 

combined effects can be incorporated via a single reduced time variable. Schwartz et al. 
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(2002), Chehab et al. (2002), Zhao and Kim (2003), and others have demonstrated that 

time-temperature superposition for asphalt concrete remains valid at strain levels 

approaching peak strength and beyond. 

The multidimensional form of Perzyna’s viscoplasticity theory can be expressed 

as: 

 

d
ij
vp

dt
R

  f s  g s 


ij

 (46) 

in which 
 


ij
 and vp

ij  are specific components of stress and viscoplastic strain rate; tR is 

reduced time; f (s) is the yield function in the multidimensional stress space s; and g (s) is 

the viscoplastic potential function. For associated flow viscoplasticity, g (s) = f (s). The 

yield and potential functions can both be interpreted as surfaces in multidimensional 

stress space. 

Equation (46) states that viscoplastic strains develop when the applied stress state 

lies outside the flow surface—i.e., when f (s) > 0. The magnitude of the viscoplastic 

strain rate is proportional to the distance between the applied stress state and the flow 

surface in multidimensional stress space. 

As before, the derivative of the viscoplastic potential function 
g s 


ij

 governs the 

direction of the viscoplastic strain increments. For the case of associated viscoplasticity, 

the direction of the incremental viscoplastic strain vector is always normal to the yield 

surface. 

As for the uniaxial case, the key components of the multidimensional Perzyna 

viscoplastic constitutive model in Eq. (46) are the yield function, the hardening law, and 

the viscoplastic potential function. Most of the differences among the various viscoplastic 
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models in the literature for asphalt concrete center on specific choices for these three 

components. For example, frictional materials like asphalt concrete, aggregates, and soils 

are best characterized by yield functions that include the strengthening effects of 

confining stress. One example of such yield functions is the standard Drucker-Prager 

generalization of Mohr-Coulomb frictional yield. Extensions to Drucker-Prager theory 

like the Hierarchical Single Surface (HiSS) model (Desai and Zang, 1987) add other 

refinements such as a nonlinear yield surface and a cap on viscoplastic flow under 

hydrostatic compression loading. 

A variety of hardening types (e.g., isotropic vs. kinematic) and various specific 

hardening laws have been employed in models in the literature. And although most 

implementations employ an associated plasticity assumption for the viscoplastic potential 

function, this is known to overestimate dilatancy for many geomaterials and as a 

consequence a variety of nonassociated flow schemes have been proposed. 

Recent representative examples of viscoplastic constitutive models for asphalt 

concrete applications can be found in Schwartz et al. (2004), Gibson et al. (2003), 

Chehab et al. (2003, 2005), Huang et al. (2002, 2004), Masad et al. (2005, 2007), 

Tashman et al. (2004, 2005), Uzan (1996, 2005), Saadeh et al. (2007), Panneerselvam 

and Panoskaltsis (2006), Collop et al. (2003), Oeser and Moller (2004), and Lu and 

Wright (1998). 

Perzyna-HiSS Model Formulation 

Frictional materials like asphalt concrete, aggregates, and soils are best 

characterized by yield functions that include the strengthening effects of confining stress. 
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One example of such yield functions is the standard Drucker-Prager generalization of 

Mohr-Coulomb frictional yield. Extensions to Drucker-Prager theory add other 

refinements such as a nonlinear yield surface and a cap on viscoplastic flow under 

hydrostatic compression loading. The present study employs the Hierarchical Single 

Surface (HiSS) model, developed by Desai and Zang (1987), with isotropic hardening 

and associated flow. The HiSS yield function has the following mathematical 

formulation: 

        2

2 1 10
n

DF J I R I R              (47) 

in which, J2D and I1 are the shear and volumetric stress invariants, γ and n are fixed 

constants that control the size and shape of the growing flow surface, ξ is the viscoplastic 

strain trajectory given by the summation of all three principal viscoplastic strains, and 

R(ξ) and α(ξ) are parameter functions governing the size and nature of the capped 

surface. Figure 13 shows schematically the HiSS flow surface in the principal stress 

domain. The functions R(ξ) and α(ξ) can be formulated as follows: 

   2
0

k
AR R R    (48) 

   1
0

ke    (49) 

Associated flow is assumed, 〈݂ሺݏሻ〉 ൌ 〈݃ሺݏሻ〉, and: 

  
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'

N
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f s A
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 
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 
 (50) 

in which F is the distance in principal stress space from the applied stress to the 

hydrostatic axis normal to the current flow surface, F0’ is the portion of this distance from 
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the current flow surface to the hydrostatic axis, and A is a calibration parameter that 

depends on the direction of the plastic flow: 

 
3

0.528

k

A
   

 
 (51) 

in which θ is the direction of the stress vector in the I1, J2D space and k3 is a material 

constant. Figure 14 describes schematically the flow rule and surface hardening. 

 

Figure 13. Three-dimensional representation of HiSS surface in principal stress space 
(Gibson, 2006). 
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Figure 14. Schematic of flow rule and surface hardening (Gibson, 2006). 

2.4. Summary 

This chapter provided an overview of the rutting problem in pavement structures. 

Two mechanisms were identified as the main causes of rutting, compaction at early 

stages of traffic loading and distortion without volume alteration during the later stages. 

These two mechanisms identify the three stages of rutting until failure. Traffic 

compaction occurs fairly quick and it is not often modeled. Common maintenance 

practices prevent pavements from reaching the third stage and failure. Therefore the 

attention to modeling rutting is given to the secondary stage. 

A few models developed over the past 40 years were briefly discussed. They lay 

the foundation for the current empirical models based on resilient strain. The current 

model used in the AASHTO’s mechanistic-empirical design guide, Darwin-ME, is based 

on vertical resilient strain and is calibrated using axial repeated load permanent 

deformation test. An alternative model, termed the Westrack model, is based on 

maximum shear strain and calibrated using the repeated shear test. 
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There are significant limitations on the use of empirical models. The most 

fundamental limitation relies on the applicability of the model. Empirical models are 

adequate for the conditions at which they were calibrated. Extrapolations are often 

hazardous. Mechanistic empirical models rely on predictions of mechanistic response. 

Linear elastic theory is most used due to simplicity. However most of materials used in 

pavement construction are not linear elastic. 

In addition, there are several issues not yet fully resolved in the framework for 

predicting rutting in the asphalt concrete layers using M-E models. There is still no clear 

consensus whether rutting is due primarily to axial or shear permanent strains. Current 

M-E rutting models relate permanent strains (axial or shear) to resilient strains computed 

using multilayer elastic theory. However, in the absence of correction factors, rutting 

predicted from these resilient strains is in sharp disagreement with field observations. 

Thickness or depth correction factors are required to bring predictions in line with 

observations. These correction factors further weaken the mechanistic linkage between 

predicted rutting and computed strains in the M-E approach. Current M-E models assume 

that the mechanisms and distributions of permanent strains are similar for HMA layers in 

flexible pavements vs. HMA overlays on rigid pavements, which is generally not true. 

And finally, current M-E models do not explicitly consider the contribution of heaving at 

the edge of the wheel paths, although this may be implicitly included in the field 

calibration corrections, given how rutting measurements are taken in the field. 

The use of advanced mechanistic modeling can help address some of the issues 

mentioned and reduce the gap between rutting predictions and field measured 

performance. Advanced mechanistic modeling employs theories of mechanics that are 
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more suitable to describe the real material behavior. The shortcoming is the complexity 

of these theories, and in particular the constitutive models. Asphalt concrete is a complex 

material in which recoverable and irrecoverable strains are dependent on temperature, 

stress and strain rates. Therefore, viscoelasticity and viscoplasticity theories are most 

appropriate to model the recoverable and irrecoverable behavior respectively. A 

framework for applying a viscoelastic-viscoplastic model based on Schapery’s 

viscoelasticity theory and Perzyna’s viscoplasticity formulation was presented. As part of 

this research, this model will be reviewed, calibrated and implemented in a finite element 

model for evaluation of pavement structures in three dimensions. 
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Chapter 3  Materials and Test Equipment 

The selection of the asphalt concrete mixture to be used in this research was based 

in three requirements: (1) availability of full-scale performance data, (2) material 

availability for preparing laboratory test specimens, and (3) full-scale tests conducted 

with controlled environment. Since the ultimate objective of this research was to develop 

a full 3-D model to predict permanent deformation in full-scale pavement sections, 

obtaining performance data was critical. In addition, it was necessary that enough 

material be available for preparing laboratory specimens for the mixture characterization. 

And finally, given the nature of the problem at hand and the computational effort 

required to mechanistically predict permanent deformation, the ideal full-scale test should 

be conducted with controlled environmental conditions, more specifically constant 

temperature. 

These conditions were found at the Full-Scale Accelerated Performance Testing 

for Superpave and Structural Validation Study conducted at the Federal Highway 

Administration (FHWA) Turner-Fairbank Highway Research Center (TFHRC), part of 

the Transportation Pooled Fund Study TPF-5(019). Details of this study are provided 

elsewhere (FHWA, 2011) 

This chapter describes the asphalt concrete mixture used in this study, mixture 

volumetrics and materials, and testing equipment. 
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3.1. Mixture Characteristics 

The asphalt concrete mixture chosen was used in lane 11 of the FHWA rutting 

study. The material is a 12.5 millimeter nominal maximum aggregate size dense graded 

modified asphalt concrete mixture meeting Virginia Department of Transportation 

specifications. The fine and coarse aggregates were all crushed diabase from Loudoun 

Quarry, VA. One percent hydrated lime was used in the mixture to reduce the potential 

for moisture damage. The aggregate gradation is shown in Figure 15. 

 

Figure 15. Asphalt concrete mixture aggregate gradation. 

The binder used in the mixture was a styrene-butadiene-styrene (SBS) elastomeric 

polymer modified binder with approximately 3 percent by weight linear grafting, 

denominated SBS-LG. The Superpave performance grade was PG 70-28. The final 

mixture design is provided in Table 1. All Superpave mixture design requirements are 

satisfied. 
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Table 1. Laboratory mixture design. 

Property Design 

Gradation 
(percent passing)   

19 mm 100 
12.5 mm 93.6 
9.5 mm 84.6 
4.75 mm 56.7 
2.36 mm 34.9 
1.18 mm 24.8 
0.6 mm 18.2 
0.3 mm 13.1 
0.15 mm 9.3 
0.075 mm 6.7 

Gmm 2.7 
Gsb 2.947 
PG-grade 70-28 
Binder content (% by mass) 5.3 
Effective binder content (% by mass) 4.9 
Effective binder content (% by 
volume) 12.7 

Design air voids (%) 4.2 
VMA at design air voids (%) 16.9 
VFA at design air voids (%) 75.2 

 

3.2. Specimen Preparation 

Twenty-four test specimens were fabricated at FHWA’s Turner-Fairbank 

Highway Research Center, in McLean, VA. The geometry and instrumentation of the test 

specimens followed recommendations from the NCHRP Project 9-19 (Witczak, 2005). 

The recommended dimensions of the cylindrical specimen are 150 mm in height and 100 

mm in diameter (height to diameter ratio of 1.5). 
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The laboratory-blended HMA mixtures were short-term aged in the oven for 4 

hours at 275°F before compaction (AASHTO PP2). The mixture was then compacted in a 

Servopac gyratory compactor to a plug of 150 mm in diameter by 170-180 mm in height. 

Test specimens were cored from the center of the gyratory plug, and the specimen ends 

were sawed parallel to produce the final specimen geometry. The desired target air voids 

was 5.5%, which corresponded to the average in-place air voids for the same mixture at 

the TFHRC Accelerated Loading Facility (ALF) study 2, lane 11. However, during 

specimen preparation the actual air voids target was set to a different value corresponding 

to another lane in the experiment. Consequently, the final average air voids of the 

specimens was 4.96%. Although this for all practical purpose is within the +0.5 air void 

tolerance, the laboratory prepared mixture is nonetheless slightly more dense than the 

field mixture for the lane being evaluated. Possible implications of this small discrepancy 

will be offered in a later chapter. 

Spring-loaded linear variable differential transformers (LVDTs) were used for 

axial strain measurements. The axial LVDTs were placed vertically on opposite sides of 

the specimen as shown in Figure 16. Parallel brass studs used to secure the LVDTs in 

place were located at a distance of 50 mm from the top and bottom of the specimen. The 

gage length between the studs was 100 mm. The LVDT measurement range was ±5.0 

mm. However, as a safety measure, the tests were not allowed to exceed 4 mm 

deformation (4% strain) to avoid damaging the instrumentation. For radial deformations, 

four externally mounted LVDTs were aligned horizontally and perpendicular to the 

center of the specimen at 90o intervals. The radial LVDTs set-up is in Figure 17. 
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Surface friction between the top and bottom of the specimen and the load platens 

is an important source of shear stresses at the end of the specimen. Two pairs of rubber 

membranes lubricated with vacuum grease were placed on the top and bottom of each 

specimen during the testing assembly to minimize the possibility of shear stress 

developing during the tests. 

 

Figure 16. Axial LVDT instrumentation. 
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Figure 17. Radial LVDT setup. 

All axial strain measurements were the average of two or four axial LVDTs 

located at 180° or 90° intervals around the specimen circumference, depending on the 

testing being performed. All radial strain measurements were the average of four radial 

LVDTs located at 90° intervals around the specimen circumference. Averaging the 

LVDTs removed specimen bending effects and reduced the overall variability of strain 

measurements on the specimen. 
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3.3. Testing Equipment 

The tests were conducted using a Universal Testing Machine (UTM) 100, 

manufactured by IPC Global of Victoria, Australia. The UTM-100 is a servohydraulic 

feedback controlled testing machine capable of performing load and displacement 

controlled tests. A photo of the UTM-100 system is provided in Figure 12. The axial load 

capacity of the machine is 100 kN. Gain switches can be used to reduce the load range to 

50 kN, 20 kN, or 10 kN for more sensitive tests. The machine is outfitted with an 

environmental temperature chamber and confining pressure cell for confined tests. 

Temperature is held constant within the chamber to the desired temperature ±2° F 

throughout the test. Control and data acquisition is achieved through a Control and Data 

Acquisition System (CDAS) unit interfaced with a PC via two serial cables. Two forms 

of test control software available from the manufacturer were used in this study. The first 

software package (UTM 3) utilizes pre-programmed test templates for dynamic modulus, 

uniaxial strain rate, and other standard tests. More sophisticated tests can be performed 

with the second software package (UTM 100), enabling user-defined programs that give 

the operator much greater flexibility in specifying loading and data acquisition settings. 

The UTM-100 is a research grade machine in which almost everything can be 

adjusted and tuned to achieve the test needs and objectives. Although this a powerful 

feature that permits the design of a wide range of tests, it also makes the preparation work 

for any individual test a little cumbersome. 

The first step is to define setup for the environmental chamber. From previous 

research conducted in the same equipment, it was found that variations in room 

temperature could have an impact on the final temperature achieved inside the chamber. 



www.manaraa.com

 

 58 

 

Moreover, ports for the wiring required for specimen instrumentation was a source for 

heat leakage. Therefore, a sequence of temperature measurements was performed to 

determine the correct setup for the various testing temperatures. 

One temperature probe was placed inside the chamber near the load actuator to 

verify the temperature reached at equilibrium for a given temperature setup at the 

chamber’s control panel. One dummy specimen was modified by inserting a temperature 

probe at its center of gravity. This probe measured the specimen temperature once 

equilibrium was reached inside the chamber. The two equilibrium temperatures (inside 

the chamber and inside the specimen) were different for all the desired testing 

temperatures, especially when the triaxial cell was used. 

After a sequence of trials, the nominal temperatures to be set at the chamber’s 

control panel were determined so that the specimen would be in equilibrium at the target 

testing temperature. The time it took to reach equilibrium was also recorded and was used 

to schedule the beginning of each test. Given the time required for the specimen 

temperature reach equilibrium, which could be over 7-8 hours for low temperature, an 

industrial climate chamber available in the laboratory was used to acclimatize all 

specimens prior to testing in order to reduce the time spent in the laboratory. 

Tuning the machine to respond correctly to the material being tested is also an 

important step taken to minimize differences in nominal and target stress/strain levels, as 

well as load pulse shape. Tuning was carried out at each of the target test temperatures. 
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3.4. Summary 

The asphalt concrete mixture used in this research was 12.5 millimeter nominal 

maximum aggregate size dense graded modified asphalt concrete mixture. The binder 

used in the mixture was a styrene-butadiene-styrene (SBS) elastomeric polymer modified 

binder, denominated SBS-LG. The Superpave performance grade was PG 70-28. The 

target binder content was 5.3% by weight and the air voids, 4.2%. 

One Universal Testing Machine (UTM), with 100 kN nominal load capacity was 

used for all laboratory calibration tests. Chapter 4 will describe in greater detail the tests 

performed and the calibration procedure used to characterize the mixture behavior. 
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Chapter 4  Model Calibration 

A laboratory testing program was designed to provide the data required to 

calibrate the linear viscoelastic, damage and viscoplastic components of the constitutive 

model. Small-strain frequency sweep tests were performed to determine the linear 

viscoelastic complex modulus and the temperature shift factors. Strain rate tests to failure 

were performed at low temperatures to calibrate the damage component of the 

constitutive model. And finally, newly designed creep and recovery tests were used to 

calibrate the viscoplastic component. 

4.1. Linear Viscoelastic Component 

The principal viscoelastic properties required for the Schapery model are the 

relaxation modulus and the time-temperature superposition. With these two properties, 

one can model any type of loading (stress or displacement induced) at any rate and any 

temperature. The complex modulus test is used to determine both properties in a single 

laboratory test. 

The viscoelastic strain is assumed to be linear and independent of stress state and 

damage. The viscoelastic strain is solely dependent on rate of loading and temperature, 

which can be interchanged using time-temperature superposition. The relaxation modulus 

master curve and the shift factors for time-temperature superposition are determined from 

the complex modulus test. 
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4.1.1. Complex Modulus Testing 

Complex modulus tests were performed in unconfined compression at four 

temperatures and six frequencies at each temperature. The dynamic modulus obtained in 

each frequency-temperature sweep was used to develop the dynamic modulus master 

curve. Dynamic modulus and the measured phase angle can be converted to the 

relaxation modulus used in the Schapery linear viscoelastic constitutive model.  

The dynamic modulus test protocol was developed in NCHRP Projects 9-19 and 

1-37A and has been standardized as AASHTO Provisional Standard TP62, “Standard 

Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete 

Mixtures.” The recommended test sequence in AASHTO TP62 for developing the 

dynamic modulus master curve consists of testing a minimum of two replicate specimens 

at temperatures of -10, 4.4, 21.1, 37.8, and 54.4 °C at loading frequencies of 25, 10, 5, 

1.0, 0.5, and 0.1 Hz. The 60 dynamic modulus measurements are then used to determine 

the parameters of the master curve by numerical optimization. The dynamic modulus test 

was performed using three replicates in this research. 

The testing protocol adopted in this research was slightly different than what is 

proposed in the AASHTO provisional standard. The lowest temperature was very 

difficult to obtain with the environmental chamber of the UTM. The thermal insulation 

was insufficient to keep the temperature at the recommended lowest value. This 

limitation is not problematic. Recent research has suggested that only three temperatures 

and four frequencies are required for developing the dynamic modulus master curve, with 

the temperature values depend on the binder grade used in the mixture (Bonaquist, 2008). 
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The temperatures chosen for the dynamic modulus tests were 5, 25, 35 and 50°C, 

which are near the recommended values in the AASHTO provisional standard. The 

temperature range is also similar to that suggested for the Asphalt Mix Performance 

Tester (AMPT) dynamic modulus test for PG 70-xx binders (i.e., 4, 20 and 40°C). The 

temperature range is intended to span the operating range for pavements in the field. But 

more importantly, the range of temperature must be broad enough to provide a full 

characterization of the master curve including the upper and lower shelves.  

The frequencies used were 20 Hz, 10 Hz, 3 Hz, 1 Hz, 0.3 Hz, and 0.1 Hz. These 

frequencies approximate the full range of loading rates pavements are likely to 

experience from live traffic ranging from slow congestion to highway speed. The number 

of cycles applied for each frequency varied from the high to low frequency as follows: 

600, 250, 100, 40, 15 and 10. 

Prior to running the test, preconditioning was performed at 10 Hz using half the 

stress level defined for this frequency. This step was suggested as a way to seat any loose 

aggregates in the specimen and remove any other anomalous strain measurements before 

the formal frequency testing (Gibson, 2006). 

Dynamic modulus is the fundamental property that characterizes the material 

behavior in the linear viscoelastic domain. Consequently the tests must be performed at 

conditions in which only viscoelastic strains are generated with no damage or residual 

strains. This is achieved by limiting the magnitude of the dynamic axial strains to values 

on the order of 100 microstrain (µ), with a tolerance of ± 25 µ. 

In equipment designed for routine production testing (e.g., the Asphalt Mixture 

Performance Tester), the control software automatically adjusts the applied stress to 
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produce the strain target range mentioned above. The UTM did not have such capabilities 

and a trial and error test was therefore conducted using a sacrificial specimen to 

determine the target stress levels for each frequency and temperature. The final stresses 

applied are shown in Table 2. 

The target strain range was achieved for nearly all temperature and frequencies. 

The exceptions were observed in tests at the highest temperature (50 °C) and the three 

highest frequencies. The average dynamic strain obtained throughout the sweep tests was 

about 85 µ, well within the specified limits. A summary of the testing protocol used is 

provided in Table 3. 

Table 2. Stresses applied in the dynamic modulus test. 

Frequency 
(Hz) 

Test Temperature (°C) 
5 25 35 48 

20 1110 328 159 81 
10 1043 265 119 63 
3 870 172 77 57 
1 716 116 57 38 

0.3 560 79 36 29 
0.1 440 58 26 19 

 

Table 3. Summary of dynamic modulus testing. 

Test Temperatures (°C) 5, 25, 35, 50 
Frequencies (Hz) 
(number of cycles) 

20, 10, 3, 1, 0.3, 0.1 
(600, 250, 100, 40, 15, 10) 

Preconditioning 100 cycles at 10 Hz and half the nominal load 
Dynamic axial strain Target range between 75 and 125 µ 

 

The tests were conducted starting from the coldest temperature and highest 

frequency and marching on to the lowest frequency with five minute intervals between 
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frequencies. The frequency sweep is then repeated at the next warmer temperature until 

all temperatures have been tested.  

4.1.2. Dynamic Modulus Master Curve 

The objective of the complex modulus tests is to determine the magnitude of the 

dynamic modulus, |E*|, and phase angle, φ, between the sinusoidal stress and strain 

responses at different temperatures and frequencies. These values were computed for the 

last six cycles in each frequency sweep using a built-in algorithm in the IPC software 

controlling the test and data acquisition. For a given cycle of stress and strain data, the 

algorithm fits a second order polynomial over 25% of the period on either side of the 

peak or valley to determine the peak-to-peak dynamic strain, peak-to-peak dynamic 

stress, and the phase angle defined as the lag in radians between the stress and strain 

peaks. 

After testing was completed, a statistical quality check was performed to assure 

the results were acceptable for modeling. The coefficient of variation of the measured 

dynamic modulus at each temperature and frequency averaged 6.8%. The standard 

deviation of measured phase angle at each frequency and temperature averaged 1° with 

the maximum of 2.6°. Suggested values for quality acceptance are 7.5% for the dynamic 

modulus coefficient of variation and a maximum of 3° for the standard deviation of phase 

angle (Bonaquist, 2008). 

Master curves are constructed using the principle of time-temperature 

superposition. First a standard reference temperature is selected. Next, data at various 

temperatures are shifted with respect to loading frequency until the curves merge into a 
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single smooth function. The complete characterization consists of the master curve and 

the shift factors. The assumed shape for the dynamic modulus master curve is a sigmoidal 

function of the following form: 

  
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 (52) 

in which *E  is the dynamic modulus; ωr is the reduced frequency (radians/second), δ is 

the minimum value of *E  (i.e., the lower shelf), δ + α is the maximum value of *E  

(i.e., the upper shelf),  and β and γ are parameters describing the location and slope of the 

transition portion of the sigmoidal function. The reduced frequency, ωr, is given by: 

 
r
 a(T )   (53) 

in which, ω is the frequency (radians/second), a(T) is the shift factor as a function of the 

temperature, T (°C). 

The approach selected for developing the master curve was first proposed by 

Pellinen (2001) and adopted by Gibson (2006). A non-linear optimization algorithm is 

used to determine the best fit for the master curve equation by adjusting all four 

parameters in Eq. (52) while simultaneously adjusting the values of a(T) for each test 

temperature then fitting a best-fit quadratic curve to the optimized a(T) values at each 

temperature. The optimization was achieved using the Solver tool in Microsoft Excel. 

This procedure is similar to that implemented in the MEPDG. 

The temperature-shifted dynamic modulus data and the associated fitted master 

curve are provided in Figure 18. Each data point in the dynamic modulus master curve is 

the average of three replicates. The temperature shift factors found during the 

optimization process and the best-fit quadratic shift function are shown in Figure 19. As 
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can be seen in Figure 18, the lower shelf of the master curve, which corresponds to low 

frequencies and/or high temperatures, is well characterized. However, the upper shelf, 

which corresponds to high frequencies and/or low temperatures, is less well characterized 

because of the practical difficulties of testing at very low temperatures and/or very high 

frequencies. 

 

Figure 18. Dynamic modulus master curve. 
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Figure 19. Temperature shift function. 

Given the provisional status of the dynamic modulus protocol used, it was 

decided to try another procedure for developing the master curve. Christensen et al. 

(2003) developed an approach based on binder stiffness and mixture volumetric data 

using the Hirsch model as part of NCHRP Projects 9-25 and 9-31. Part of this effort was 

to develop an abbreviated testing protocol for development of dynamic modulus master 

curves for routine mixture evaluation and design (Bonaquist, 2008). The need for extreme 

low temperature testing is avoided by estimating the upper shelf of the master curve using 

a limiting maximum modulus parameter. The modified master curve equation is given 

by: 

 log E *   
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1 e log r
 (54) 

in which, *E  is the dynamic modulus; ωr is the reduced frequency (radians/second), 

Max is the limiting maximum modulus and , , and  are fitting parameters. The 
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maximum limiting modulus is estimated from mixture volumetric properties using the 

Hirsch model and a limiting binder modulus of 1 GPa as follows: 
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in which VMA is the voids in mineral aggregates (%), VFA is the voids filled with 

asphalt (%), and Pc is given by: 

 Pc 
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The reduced frequency is computed using the Arrhenius equation: 
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in which, ω is the frequency (radians/second), a(T) is the shift factor as a function of the 

temperature, T, Tr is the reference temperature, both in K, and Ea is the activation 

energy, which is treated as a fitting parameter. 

The master curve based on the Hirsch model is compared to the MEPDG master 

curve in Figure 20. There is a very good agreement between the two fitted master curves, 

which indicates a good characterization including the upper shelf. The master curve 

determined using the MEPDG procedure was selected for the linear viscoelastic 

characterization of the asphalt concrete mixture. The final parameters are summarized in 

Table 4. The reference temperature selected was 19°C. 
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Figure 20. Comparison between MEPDG and Hirsch master curves. 

Table 4. Dynamic master curve and temperature shift factors. 

Dynamic Modulus 
Master Curve 

δ = 2.46239 
α = 1.84048 
β = - 0.14792 
γ = - 0.68108 

Temperature Shift 
Factors 

a(5°C) = 101.8275

a(25°C) = 10-0.7761

a(35°C) = 10-2.0601

a(48°C) = 10-3.7116

 

4.1.3. Relaxation Modulus and Creep Compliance 

The relaxation modulus describes the relationship between stress and strain under 

a constant strain condition. Conversely, creep compliance describes the same relationship 

under a constant stress condition. The complex modulus test data described in the 

preceding section were used to determine the relaxation modulus and creep compliance 

properties of the asphalt concrete mixture. 
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As described in Chapter 2 , the generalized Maxwell model can be used to 

represent the complex modulus. Prony series are used to fit the storage modulus, E’(ω), 

and the loss modulus, E”(ω). The relaxation modulus can then be described using Eq. 

(21), which for convenience is reproduced here: 

   0
1

i

tm

i
i

E t E E e 




   (58) 

in which E0 is the long term equilibrium modulus, Ei and ρi are the elastic springs and 

relaxation times for the elements in the generalized Maxwell model, and m represents the 

number of single Maxwell instances are in the generalized model. Creep compliance can 

be also represented by the following Prony series: 

   0
1

1 j

t
n

j
j

D t D D e




 
   
 
 

  (59) 

in which, D0, Dj and τj are Prony series constants. Strain creep and stress relaxation are 

two aspects of the same viscoelastic behavior and therefore are related. The relationship 

is given by Eq. (60). Park and Schapery (1999) developed a procedure to determine the 

creep compliance constants from the relaxation modulus through a system of algebraic 

linear equations (Gibson, 2006; Kim et al., 2009). 

    
0

t

E t D d t     (60) 

For the scope of this research, the required property is the relaxation modulus, 

which is needed for determining the pseudo strains for the continuum damage 

characterization. Creep compliance, although not necessary, was computed to complete 

the mixture characterization. 
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The storage modulus was computed from the dynamic modulus measured in the 

frequency sweep tests using Eq. (26). A master curve was fit to the storage modulus data 

following the same process used for the dynamic modulus master curve. Figure 21 

illustrates the master curve fit for the storage modulus. Once the master curve has been 

determined, the Prony series described in Eq. (58) was determined. The final step was the 

calculation of the creep compliance Prony series constants. The final relaxation modulus 

and creep compliance determined from this conversion procedure are illustrated in Figure 

22. The final Prony series constants for Eqs. (58) and (59) are shown in Table 5. 

 

Figure 21. Storage modulus master curve. 
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Figure 22. Relaxation modulus and creep compliance. 

Table 5. Prony series constants for relaxation modulus and creep compliance. 

i 
Relaxation Modulus Creep Compliance 
ρi (sec) Ei (MPa) τj (sec) Dj (MPa-1) 

0 - 338.2976 - 4.71E-05 

1 0.000001 3435.971 5E-07 4.84E-06 

2 0.00001 3435.971 0.000005 1.32E-05 

3 0.0001 3435.971 0.00005 1.89E-05 

4 0.001 3435.971 0.0005 3.15E-05 

5 0.01 3435.971 0.005 5.82E-05 

6 0.1 2286.747 0.05 0.000126 

7 1 850.0592 0.5 0.000352 

8 10 351.6168 5 0.000661 

9 100 132.8441 50 0.00079 

10 1000 73.26597 500 0.000653 

11 10000 0.003015 5000 0.000199 

12 100000 0.003015 50000 1E-11 

Time-temperature superposition 

Temperature 5°C 25°C 35°C 48°C 

Log a(T) 1.810225 -0.76011 -2.00601 -3.58657 
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4.2. Continuum Damage Model 

The continuum damage behavior is characterized by macroscale stiffness 

reduction due to the development of microcracks that eventually coalesce into 

macrofractures and crack propagation. The continuum damage model was calibrated 

using constant strain rate tests to failure at low temperatures. Unconfined and confined 

tests at two different strain rates were performed to calibrate the damage functions as 

defined by Schapery’s work potential theory. The energy density function used to relate 

damage with the stiffness of the material presented previously as Eq. (37) in Chapter 2 is 

reproduced here for convenience: 

        
2

1 2
11 12 1 22

1

2 2

R

R
dW C S C S p C S p


    (61) 

in which, Cij are the damage functions, S is an internal state variable, p is the confining 

pressure and 1
R  is the pseudo axial strain. From Eq. (61), stress-strain relations can be 

derived as follows: 

 11 1 12
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R
Rd

R

W
C C p 




   


 (62) 

 12 1 22

R
R Rd
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W
e C C p

p


  


 (63) 

in which the additional variable, R
v , is the pseudo volumetric strain. In the multiaxial 

formulation with symmetry on axis x3, 11 22 p    . The pseudo strains are computed 

using the following hereditary convolution integrals: 

   1
1

0

1 t
R

R R R
R R

d
E t d

E d

  


   (64) 
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  
0

1 t
R v
v R R R

R R

d
E t d

E d

  


   (65) 

in which E(tR) is the relaxation modulus and tR is reduced time, ER is the reference 

modulus taken here as equal to 1, and R
v  is the pseudo volumetric strain. The internal 

state variable is governed by a damage evolution law as follows: 

 dWdS

dt S

    
 (66) 

in which α is a material property. Calibration of α was found to be very difficult. The 

optimum value is the one that makes all damage curves collapse onto a single master 

damage curve. Previous attempts to calibrate α were carried out by trial and error using 

an incremental approach over values varying from 1.25 to 2.25 (Gibson, 2006). It was 

found that the optimum value ranged between 1.75 and 2.0. Kim et al (2009), 

summarizing the efforts by other researchers, suggested that α was inversely proportional 

to the absolute maximum slope of the relaxation modulus master curve, m. This approach 

suggests a value for α of 2.1. Different α values were tried and ultimately a value of 2.0 

was adopted. 

Following Schapery’s work potential theory for a viscoelastic media with 

damage, it is assumed that the material is isotropic in the undamaged state (Ha, 1996). 

Therefore, Schapery’s energy density function, Eq. (61), must be equivalent to the strain 

energy function of a typical isotropic material. This assumption yields the following 

constraints for the damage functions when no damage has occurred: 
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 (67) 

in which υ is the initial Poisson’s ratio and Eref is the reference modulus – in this case 

taken as equal to 1. 

Unconfined constant strain rate tests to failure were used to determine the damage 

functions C11 and C12 by applying both stress-strain relations described in Eq. (62). Once 

C11 and C12 were determined, results from the confined tests were used to determine the 

remaining damage function, C22, using Eq. (63). The reference temperature of 19°C was 

adopted for the damage model calibration. The reduced frequency was calculated using 

the temperature shift factors provided in Table 4. 

4.2.1. Constant Strain Rate Tests to Failure 

Unconfined and confined constant strain rate tests to failure were performed at 

10°C. The low temperature minimizes the development of viscoplastic strains. 

Temperatures lower than 10°C would have been better, but there were limitations in the 

environmental chamber encapsulating the specimen, loading and measurement apparatus. 

After trying to establish equilibrium at 5°C, it was found that sustained constant 

temperature was only possible at 10°C.  

Sacrificial dummy specimens were used to define the strain rates for the tests. A 

trial and error procedure was carried out to find out the fastest loading rate that the 

machine would apply and still fail the specimens before reaching its nominal load limit. 
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The triaxial chamber pressure was set at 250 kPa for the confined tests. For safety reasons 

and the measurement limits of the LVDTs, the tests were programmed to end when total 

deformation reached 4%. Strain rates of 0.0001 and 0.0008 ε/second were selected based 

on this procedure for both unconfined and confined conditions. Stress versus strain plots 

from the unconfined and confined strain rate tests are shown respectively in Figure 23 

and Figure 24. 

Some viscoplastic strains were induced along with the viscoelastic plus damage 

strains. To ensure accurate calibration of the damage model, these viscoplastic strains 

were removed from the total measured strains using the calibrated viscoplasticity model, 

which is described in greater detail later in this chapter. 

 

Figure 23. Unconfined strain rate tests at 10°C: stress versus strain curves for strain rates 
of 0.0001 and 0.0008 ε/second. 
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Figure 24. Confined strain rate tests at 10°C: stress versus strain curves for strain rates of 
0.0001 and 0.0008 ε/second. 

4.2.2. Calibration of Damage Function C11 

Under unconfined conditions (i.e., uniaxial loading), the confinement term in Eq. 

(62) disappears and the damage function C11 can be defined as: 

 11
1
R

C




  (68) 

Although C11 can be determined directly from the test, the internal damage 

variable, S, cannot. As described in Chapter 2, a discrete solution for S can be defined as: 
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 (69) 

in which i denotes the time step in the test and Ci is a simplified notation for C11 at t=ti. 

The term iC

S




 is computed as the difference in the damage function caused by a small 
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variation in S (i.e., 0.1). The internal state variable for the next time step, Si+1, is then 

computed using Eq. (69) and the process repeated until all time steps in the test are 

calculated. The damage function C11 was assumed to have the following form: 

   baSC S e  (70) 

in which a and b are material constants. Optimization using the Solver tool in Microsoft 

Excel™ was employed to calibrate the damage function by minimizing the sum squared 

difference between predicted and calculated damage. 

This process was repeated for every specimen replicate and strain rate tested in 

unconfined conditions. Figure 25 summarizes the results of the calibration process for 

each replicate and the average calibration considering all replicates simultaneously. For 

this given mixture, it was found that a = -0.00298 and b = 0.5006. 

 

Figure 25. Damage function C11 versus S for all replicates at 10°C. 
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4.2.3. Calibration of Damage Function C12 

Under unconfined conditions (p=0), C12 can be calculated from Eq. (63) at any 

time as follows: 

 12
1

R
v
R

e
C


  (71) 

The internal state variable, S, has already been determined during the calibration 

of C11. The damage function C12 was plotted against S and the following function was fit 

using a least squares optimization process: 

     2
12 12, 1 3 1

c S
iniC S C c e c S c     (72) 

in which ci are material constants, and 12, 1 2inic    to satisfy Eq. (67). 

The strain rate test results showed that the specimens initially exhibited 

compressive and later expansive volumetric strains. The variation of the Poisson’s ratio 

with time is shown Figure 26. The variation is attributed to internal damage occurring in 

the material. Ideally, C12 would be a function of a rate-dependent Poisson’s ratio, 

although for simplicity and practical applications, the option chosen was to treat C12 as a 

function of the initial Poisson’s ratio. The exponential functions shown in Figure 26 were 

used to smooth the data points and the intercepts were averaged to determine the 

mixture’s initial Poisson’s ratio value of 0.428. This value is within the range reported by 

other researchers (Kim et al., 2009). It is worth noting that the Poisson’s ratio of 0.5 

separates the volume behavior between contraction and dilation. The specimens undergo 

contraction at the beginning and dilation at the end of the test. 
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Figure 26. Poisson's ratio variation during the strain rate tests. 

The final C12 function is taken as the average of all individually calibrated 

functions for each replicate. The final model is shown in Table 6. Figure 27 presents the 

measured damage function C12 versus the internal damage variable, S, for all replicates 

and the final calibrated model for all tests. A decreasing C12 is consistent with an 

increasing Poisson’s ratio due to growing damage. The point where C12 changes sign also 

corresponds to the change in behavior from compression to expansion observed in the 

specimens during testing. 

Table 6. Damage function C12 calibration coefficients. 

Constant Value 
C12,ini 0.144 

c1 0.1423 
c2 1.317x10-5 
c3 4.103x10-7 
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Figure 27. Damage function C12 versus S for all replicates at 10°C. 

4.2.4. Calibration of Damage Function C22 

The last damage function to be calibrated was C22. Confined strain rate test results 

were used to complete the damage characterization of the mixture. After the other 

damage functions have been established, Eq. (63) was used to solve for C22 as follows:  

 12 1
22

R R
ve C

C
p


  (73) 

in which the variables are as described previously. The solution of Eq. (73) requires a 

different approach because the damage variable, S, must be calculated at the same time. 

The approach consisted of using Eq. (62) to compute the deviator stress, Δσ, and 

minimizing the error by fitting the appropriate curve to the damage function C22. 

The nature of the tests and the approach required to calibrate the damage function 

made it difficult to calibrate the model for confined conditions with the same level of 

accuracy attained for the unconfined tests. The effects of noise in the data and specimen 

to specimen variability were magnified because of the small magnitude of measured 
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strains in the confined tests, especially at earlier stages of testing. Moreover, any errors 

from computing the damage variable, S, were propagated to the calibration of C22. 

The function chosen to represent C22 was a second order polynomial function: 

  2
22 1 2C d d S         (74) 

in which d1 and d2 are material calibration constants. As described previously, the 

intercept was defined by the requirement for transversely isotropic conditions when the 

material is undamaged. Figure 28 presents the calculated damage function C22 versus the 

internal damage variable, S, for all replicates and the final calibrated model for all tests.  

The calibrated values of the material constants are d1 = -0.4113 and d2 = -1.6937x10-10. 

 

Figure 28. Damage function C22 versus S for all replicates at 10°C. 
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while maintaining the range of stresses and frequencies defined by Gibson for the creep 

and recovery tests. 

The Hierarchical Single Surface (HiSS) model (Desai and Zang, 1987) employing 

isotropic hardening and associated flow was used. The constitutive model, detailed 

previously in Chapter 2, is summarized here for convenience. The HiSS yield surface is 

defined as: 

        2

2 1 10
n

DF J I R I R          
   (75) 

in which J2D and I1 are the shear and volumetric stress invariants, γ and n are fixed 

constants that control the size and shape of the growing flow surface, ξ is the viscoplastic 

strain trajectory given by the summation of all three principal viscoplastic strains, and 

R(ξ) and α(ξ) are hardening functions governing the size and nature of the capped 

surface. The functions R(ξ) and α(ξ) are formulated as: 

   2
0

k
AR R R    (76) 

   1
0

ke    (77) 

in which, R0, RA, k2, α0 and k1 are material constants. Associated flow was assumed, 

   f s g s , and: 

  
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1
'

N
F

f s A
F

 
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 
 (78) 

in which F is the distance in principal stress space from the applied stress to the 

hydrostatic axis normal to the current flow surface, F0’ is the portion of this distance from 

the current flow surface to the hydrostatic axis, A is a calibration parameter that depends 

on the direction of the plastic flow: 
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 (79) 

in which θ is the direction of the stress vector in the I1, J2D space, and k3 is a material 

constant. 

4.3.1. Multi-Stress/Load Duration Tests 

The viscoplastic component was calibrated using cyclic creep and recovery tests 

in unconfined and confined conditions. The confining stress was 250 kPa. A trial was 

conducted to determine the temperature for the test using sacrificial specimens. 

Temperatures varying from 60 to 40°C were tried. The specimens tested at high 

temperatures were failing prematurely with few cycles. The best results were achieved at 

40°C. Temperature was measured throughout the test and at the end the final average 

temperature for all creep and recovery tests was 39 °C. 

In the original procedure (Gibson, 2006), the model was calibrated using two 

separate tests, one in which the deviatoric stress was constant and the duration of the load 

pulse was increased with each cycle, and a second in which the load duration was 

constant and the deviatoric stress was increased with each cycle. This procedure has been 

updated here to reduce the number of specimens and expedite testing. 

A combination of load durations and deviatoric stresses were used in a single test 

to cover a wide range of stress conditions, as shown in Table 7. The same combination of 

deviatoric stresses and frequencies were used in unconfined and confined tests. An 

example of the measured total strain history recorded during one test is shown in Figure 

29. Each peak corresponds to one cycle. One detailed cycle is provided in the figure inset, 
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in which all components of the response (elastic, viscoelastic and viscoplastic) can be 

seen. The permanent response at each cycle was recorded at the end of each rest period. 

Three replicates were tested in unconfined and three in confined conditions. The 

averages of permanent strains measured at the end of each cycle were used in the 

calibration. Figure 30 shows the average measured axial and radial permanent strains for 

unconfined and confined conditions. 

Table 7. Deviatoric stress and frequency used on multi-stress/load duration test. 

Cycle Deviatoric Stress (kPa) Duration (s) Rest period (s) 
1 120 2 20 
2 120 7 70 
3 120 56 560 
4 497 2 20 
5 497 7 70 
6 497 56 560 
7 1004 2 20 
8 1004 7 70 
9 1004 56 560 
10 1500 2 20 
11 1500 7 70 
12 1500 56 560 
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Figure 29. Example of multi-stress/load duration creep and recovery test. 

 

Figure 30. Creep and recovery viscoplastic strains versus load cycles. 
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4.3.2. Viscoplastic Model Calibration 

The viscoplastic model was written as a Matlab™ script and the calibration of all 

model constants was performed simultaneously using the minimization function in 

Matlab™. The sum of the squared difference between the calculated and measured 

permanent strains at all cycles in the test was the parameter to be minimized. In order to 

effectively consider all stress states and magnitudes, unconfined and confined test results 

were used simultaneously in the minimization function. The reference temperature of 

19°C was adopted for the viscoplastic model calibration. The reduced frequency was 

calculated using the temperature shift factors provided in Table 4. The final model 

calibration coefficients are presented in Table 8. Predicted vs. measured strain plots are 

shown in Figure 31. 

Table 8. Viscoplastic model calibration coefficients. 

Parameter Calibration Coefficient 
Γ 1.659E-09 (kPa.s)-1

γ 0.04275 
α0 0.00683 
k1 -68.096 
n 2.2564 
N 1.07604 
Ra 3227.41 (kPa) 
k2 0.3306 
R0 38.4245 (kPa) 
k3 2.5782 
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(a) 

 

(b) 

Figure 31. Viscoplastic model calibration using cyclic creep and recovery tests: (a) 
unconfined and (b) confined. 
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4.3.3. Validation with the Flow Number Test 

Researchers at the FHWA Turner-Fairbank Highway Research Center conducted 

Flow Number (FN) tests on the same mixture tested in the present study. The Flow 

Number test is a pulsed cyclic load and recovery test with fixed loading/recovery times 

and a fixed stress level where the permanent strains are measured after each load cycle. 

The tests can be performed unconfined and confined on cylindrical specimens. The FN 

test is used as a performance test for rutting susceptibility of asphalt mixtures. In 

addition, its results are used for calibration of rutting models such as the one used in the 

mechanistic-empirical pavement design guide (MEPDG). The test can be done using the 

Asphalt Mixture Performance Tester (AMPT). 

These FN tests provided an excellent opportunity for validation since they were 

performed on the same mixture but conducted at a different laboratory and by different 

technicians. In addition, the strain measurements were different; high accuracy digital 

images of the specimen’s deformation were used in the FN test, while conventional 

LVDTs were used during the multi-stress/load duration tests. The end conditions for 

applying the load at the two tests were also different. Spherical ball was used at the UTM 

in the University of Maryland, while flat end platen was used in the FN test. And finally 

the temperature for the FN test was set at 64°C, compared to 40°C for the multi-

stress/load duration test. 

The FN tests were performed at unconfined and confined conditions using three 

replicates each. The load was applied as a haversine pulse with a duration 0.1 seconds 

followed by a rest period of 0.9 seconds for recovery of elastic/viscoelastic strains. 

Viscoplastic strains were recorded at the end of each rest period. The deviatoric stress 
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was 207 kPa (30 psi) for the unconfined tests and 827 kPa (120 psi) for confined. The 

confinement was 68.9 kPa (10 psi). 

The calibrated viscoplastic model was used to predict the permanent strains 

measured in the FN tests. Time-temperature superposition was applied using the 

temperature shift factors determined from the complex modulus tests.  

The comparison between predicted and measured strains is shown in Figure 32. 

The red vertical bars represent the variability observed in the test. The model predicted 

the strains of the confined test with reasonable accuracy, but the unconfined strains were 

underpredicted. This is in part due to the small deviatoric stress applied in the unconfined 

test. During calibration, responses to small deviatoric stresses were consistently 

underpredicted as the price for better predictions at higher stress levels. However, for 

practical applications, the stress conditions used in the confined FN test are more 

representative of real pavements and thus more relevant to rutting performance. 

 

Figure 32. Predicted versus measured strains in the Flow Number validation test. 
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4.4. Calibration of the Viscoplastic Model Using the Flow Number Test 

The FN tests used to validate the research-grade calibration were also used to 

recalibrate the model as an internal consistency check. The FN test can be done using the 

AMPT and is being considered as the test of choice for calibrating the empirical rutting 

model in the MEPDG. Therefore this exercise, if successful, could simplify the 

viscoplastic model calibration and minimize the effort for future implementation of a full 

mechanistic model for rutting prediction. 

Following the opposite path taken for the conventional, research-grade 

calibration, the viscoplastic model was recalibrated using the FN test results. Once the 

model was recalibrated, it was validated using the multi-stress/load duration tests. The 

information about load and duration of each cycle was fed into the Matlab™ script and 

the same optimization algorithm was used to find the material constants of the 

viscoplastic model. Predicted versus measured strains obtained during calibration are 

shown in Figure 34. The comparison between the two viscoplastic model calibrations is 

provided in Table 9. All parameters in the model are calibrated at the same time, 

therefore large variations in one or more parameters are expected. Overall these 

variations cancel each other out during the minimization of errors. 
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Figure 33. Viscoplastic model calibration using the Flow Number test. 

Table 9. Comparison between the two viscoplastic model calibrations. 

Parameter 
Multi-stress/load 

duration calibrated 
model 

FN calibrated 
model 

Γ, (kPa.s)-1 1.659E-09 3.1888E-09 
γ 0.04275 0.04173 
α0 0.00683 0.00565 
k1 -68.096 -39.642 
n 2.2564 2.3009 
N 1.07604 2.55519 

Ra (kPa) 3227.41 4192.94 
k2 0.3306 0.5241 

R0 (kPa) 38.4245 23.9368 
k3 2.5782 4.8948 
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4.4.1. Validation with the Multi-Stress/Load Duration Test 

The model calibrated using the FN tests was used to predict the results of the 

multi-stress/load duration tests. The results, presented in Figure 34, suggest a good 

agreement between predicted and measured permanent strains. The model calibrated 

using the FN tests predicted permanent strains that agree well with the measured data. 

 

(a) 

 

(b) 

Figure 34. Predicted versus measured viscoplastic strains from multi-stress/load duration 
creep and recovery tests: (a) unconfined and (b) confined. Predicted strains computed 

using the FN-calibrated model. 
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One of the major disadvantages of advanced characterization of asphalt concrete 

mixtures is the complex calibration process, which often requires one or more research-

grade tests. This poses as an obstacle to practitioners and limits the use of advanced 

modeling as tools for practical applications. The results shown in Figure 34 suggested 

that the Perzyna-HiSS viscoplastic model can be calibrated using the FN test, a simple 

test that can be performed easily on a production basis using the AMPT. 

4.5. Summary 

This chapter described the calibration process for the viscoelastic-viscoplastic 

constitutive model. The linear viscoelastic component was calibrated using the complex 

modulus test. The dynamic modulus master curve, relaxation modulus and creep 

compliance were determined. The continuum damage component was calibrated using 

unconfined and confined constant strain rate tests to failure at low temperatures. 

The viscoplastic component was calibrated using unconfined and confined cyclic 

creep and recovery test, termed multi-stress/load duration test, in which different stress 

levels and load duration were applied in sequence on the same specimen until failure. 

This test was designed to expedite the calibration process and reduce the number of 

specimens required. Flow Number (FN) tests were used to verify the calibrated model. 

These tests were performed independently by FHWA at the Turner-Fairbank Highway 

Research Center. In addition, the same FN tests were used to recalibrate the viscoplastic 

model, which was then verified using the multi-stress/load duration test. The results 

demonstrated that the Perzyna-HiSS viscoplastic model can be successfully calibrated 

using the simple FN test. 
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The implementation of the calibrated model in a finite element method is one of 

the objectives of this research. This implementation is described in detail in Chapter 5. A 

series of applications follows in Chapter 6. 
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Chapter 5   Finite Element Modeling 

5.1. Introduction 

Pavement design requires selecting materials and a structure that will withstand 

cyclic loading and climate fluctuations over a long period of time. Materials used in 

pavement construction require advanced constitutive models that are capable of capturing 

the complexities observed in their behavior. Finite element (FE) methods are ideal for 

modeling complex material behavior. However, simulating large number of load 

applications in finite element analyses is a daunting task that requires significant 

computational effort, which is often prohibitive for practical designs. Nevertheless, FE 

analysis can improve understanding of material behavior and pavement performance, 

provide insights on critical locations and behavior phenomena in the pavement structure, 

and help the design of more effective structures and materials. 

The viscoelastic-viscoplastic model developed and calibrated in this research was 

implemented in ABAQUS™ (2006), a commercial finite element package widely 

employed in pavement engineering research. The objective was to have a robust but 

simple to use tool for analyzing permanent deformations in pavements under moving 

wheel loads. ABAQUS is a good tool for this application for several reasons. It is a 

mature, well-validated, and well-documented finite element analysis program. It has a 

user-friendly interface for pre- and post-processing, which facilitates creating models and 

visualizing results after the analysis is complete. In addition, it has a large variety of 

constitutive models in its library that can be used to model other layers in the pavement 

structure (e.g., elastic, elasto-plastic, etc.). 
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Most importantly, ABAQUS provides the option of incorporating user defined 

material functions (UMAT) instead of its built-in constitutive models. The UMAT is 

written in FORTRAN™ and it is called from the analysis module during the simulation 

process. The constitutive model described in Chapter 4 was implemented in a UMAT. 

This Chapter provides a briefly overview of the key FEM and ABAQUS components 

relevant to the moving wheel analyses and a description of how the constitutive model 

was written in the UMAT. 

Version 6.7.8 of ABAQUS was used in this research. It was installed in a 

workstation with 4 processors Intel Core 2 Extreme, 2.6 GHz, with 4GB of RAM, 

operated by Windows XP 64-bit. The FORTRAN compiler was Intel™ version 9.0. 

5.2. Finite Element Method 

The FEM provides numerical approximations to problems that are difficult to 

solve analytically. It is a piecewise formulation in which the problem is divided in many 

smaller problems (elements) that are solved simultaneously. The elements are connected 

to each other at nodes, typically the corners but also sometimes at other points (e.g., mid 

points at element sides). A continuous polynomial function of the desired response (e.g., 

displacement) is defined within the element between the nodes, forming an approximate 

piecewise representation of the response over the entire solution domain. Loads and 

boundary conditions are applied to the nodes. Equations describing the behavior of each 

element and the interaction of elements between nodes are assembled for form a set of 

linear equations that is solved to find the desired primary response, in this case the 

displacement values at the nodes. 
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The procedure for computational modeling using the FEM consists of six steps: 

 Geometry modeling, including boundary conditions 

 Meshing and element definition 

 Material property specification 

 Loading condition application 

 Simulation 

 Visualization 

5.2.1. Geometric Model and Boundary Conditions 

The pavement geometric model was constructed by using independent parts in the 

ABAQUS solid modeler. Each part represented one layer in the pavement structure. The 

geometric model was created in three dimensions (3D) with an axis of symmetry along 

the longitudinal center of the tire load. Figure 35 shows one pavement cross-section; the 

different shades of gray represent individual layers. 

The axis of symmetry is taken as the center of the tire, hence only half of the 

problem is modeled. Therefore the direction of traffic was defined along the axis of 

symmetry. Boundary conditions were applied to all faces of the geometric model to limit 

displacement in the direction perpendicular to the face. The bottom of the last layer 

modeling the subgrade was limited to no displacement in all directions (encastre). All 

predictions of rutting were calculated at the middle cross section of the model. Several 

models were tested to ensure that the effects of boundary conditions on the mechanistic 

responses induced by the tire load were insignificant. 
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Figure 35. 3D solid model. 

5.2.2. Meshing and Element Definition 

The meshing process divides the problem domain into the set of elements 

connected at nodes. The density of elements in a given region of the problem controls the 

accuracy of the results. In the case of modeling a pavement subjected to a tire load, a high 

element density is desired near the load. Unfortunately, the more elements, the longer the 

required computational time. It is therefore necessary to limit the number of elements. 

The meshing process typically requires several iterations in order to define on an 

optimum number of elements that will produce a sufficiently accurate solution at a 

practically realistic computational effort. 

The element type and respective number of nodes are defined during the meshing 

process. The number of nodes defines the type of function that can be used to 
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approximate the solution within an individual element. Simple 4-node quadrilateral 

elements in 2-D or 8-node brick elements in 3-D only allow linear approximations of the 

displacements between the corner nodes. Elements with additional nodes (e.g., at the 

midpoint of each edge) can accommodate higher order approximating polynomials. 

However the computational effort increases significantly. The most common approach is 

to use simple elements and increase the number of elements in regions of high desired 

accuracy. Eight-node brick elements were used in this model. 

The tire load could not be applied instantly in the nonlinear analyses. Incremental 

loading was required to bring the tire pressure up to the desired peak. Since the ultimate 

goal was to evaluate responses induced by a moving load, there was no need for 

additional refinement to the mesh where the tire load was initially applied and later 

removed at the end of the cycle. In addition, regions distant from the loading zone could 

also be meshed with fewer elements. Therefore, each layer was divided into several zones 

and each zone was meshed differently. This effort greatly expedited computational time. 

Figure 36 shows the plan view of the pavement surface. The ½ tire footprint was 

modeled as a 0.24 x 0.12 m rectangular area. The horizontal and vertical lines define the 

different meshing zones. The center area was defined as the moving load area, at which 

the most refined mesh was defined. The two adjacent areas area where the tire pressure 

was loaded and unloaded are also shown in the figure. All layers were modeled using the 

same zone configuration.  

When zone configuration was completed, a mesh study was conducted to 

determine the optimal mesh density for each area. Figure 37 shows the final mesh for the 
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surface layer in plan view. A finer mesh is used in areas close to the moving wheel load, 

and a coarser mesh in more remote areas. 

 

Figure 36. Plan (surface) view of geometric model. 

 

Figure 37. Surface layer mesh in plan view. 

Each layer in the pavement structure was modeled as one independent part in the 

ABAQUS solid modeler. The same principle of meshing by area was applied to all layers 

in the pavement cross section, following the zone configuration shown in Figure 36. 

There is no need for coincidental node positions between parts when the modeling by 

Moving Loading 
Area 
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parts. This is a great advantage because one can define the mesh of each part separately, 

which greatly enhance computational time. The final model mesh is shown in Figure 38. 

It consisted of 20,700 8-node brick elements with 24,855 nodes. 

 

Figure 38. 3D finite element mesh. 

5.2.3. Material Property Specification 

ABAQUS has two options for selecting the constitutive model that governs the 

material behavior and consequently the material property inputs. For common material 

behavior, there is a library of constitutive models encompassing typical linear and non-

linear models. For less common material behavior, there is an option of creating a user-

defined constitutive model or UMAT. For the analyses in this dissertation, all pavement 

layers other than the asphalt concrete were modeled as homogeneous isotropic linearly 

elastic materials. The asphalt concrete was modeled using the viscoelastic-viscoplastic 
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model described in Chapter 2 as implemented in a UMAT. The details about the UMAT 

are provided in a later section in this Chapter. The remaining material properties used are 

provided in Chapter 6 with the description of the problems evaluated and results 

obtained.  

5.2.4. Loading Conditions 

The loading condition defines the prescribed loading of the problem. For 

structural analysis it can be in the form of forces, pressures or displacements. Loads are 

applied to the nodes. Pressure loads are transformed into nodal forces and applied directly 

to the nodes within the loaded area. The load cannot be applied instantly in the nonlinear 

analyses; it must be modeled in increments. To represent instant loading, very small 

loading time is used. In addition, the type of loading increment can be defined as well. A 

linear increase over the loading time is typical, although many FE software allow 

different increment forms, such as exponential, or even sinusoidal for cyclic loading. A 

linear increase of loading from zero to the defined peak was used in this research. Once 

the prescribed load is fully reached, a new step is generated which takes the load and 

places it in an adjacent location, thus simulating the moving of the wheel.  

The tire footprint was modeled as a pressure load of 690 kPa (100 psi) applied 

directly on the set of elements beneath the wheel. As shown in Figure 39, the moving 

wheel was simulated by incrementally moving the load footprint from one set of elements 

to the next by adding a new line of loaded elements in the front end of the tire, while 

removing one line of loaded elements from the back end of the tire. This gives the motion 

aspect of the load. Although time consuming, this approach is a far better representation 
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of a moving tire than the step-wise process commonly found in the literature. In addition, 

the load when modeled as a pressure area applied directly on the surface instead of the 

actual modeling of the tire as an independent part increases computational performance 

and reduces the risk of numerical instabilities that could happen at the interface between 

the two parts (tire and pavement structure).  

 

Figure 39. Schematic of moving load. 

5.2.5. Simulation 

After the numerical model has been assembled, it must be solved. The solution to 

the system of linear equations gives the values for the response variable at each node of 

the mesh. The computational effort is directly proportional to the number of equations 

that are being solved simultaneously, which in turn is a function of the number of 
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elements/nodes. A direct solution algorithm based on Gauss elimination is most 

commonly used to solve the set of linear equations. However, when one is dealing with 

nonlinear problems, which is the case in this research, the load must usually be applied 

and repositioned in small increments in order to track the nonlinear response. The 

nonlinear system is approximated as an equivalent linear system for each load increment. 

An iterative procedure is then applied to solve the equilibrium between the applied loads 

and the nonlinear stress-strain behavior of the elements. 

ABAQUS offers a direct linear equation solver based on Gauss elimination and an 

iterative nonlinear solver based on a modified Newton-Raphson algorithm. Other options 

available in ABAQUS were explored, but in the end the stability of the Newton-Raphson 

method was decisive. The step increment is automatically chosen by ABAQUS, but with 

some constraints on the maximum step size. Implicit time integration was employed in 

the analyses for two main reasons. One was unconditionally stability, which proved to be 

critical even when simple models such as elasto-plasticity were first explored. The 

second was a software limitation; user-defined constitutive models must be implemented 

as UMATs using an implicit formulation. 

5.3. Viscoelastic-Viscoplastic Model Implementation 

The viscoelastic-viscoplastic constitutive model was implemented in ABAQUS as 

a user defined UMAT. The UMAT subroutine is coded in FORTRAN™ and is compiled 

and linked into the ABAQUS executable file. The UMAT must provide two outputs to 

the ABAQUS analysis: (1) updated stress vectors and solution dependent internal 
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variables at the end of each load step increment (or iteration), and (2) the material 

stiffness matrix. 

The constitutive model is implemented in a three dimensional formulation but has 

the capabilities for two dimensional axisymmetric or plane strain problems that are also 

often used in pavement modeling. Documentation on how to create a UMAT is limited. 

Examples are scarce and often poorly documented. This made the development a difficult 

task.  

The UMAT code is documented and presented in Appendix A. In addition to 

implementing the viscoelastic-viscoplastic constitutive model described in Chapter 2, it 

can also be used as step-by-step template for creating other UMATs. The key steps can 

be outlined as follows: 

1. Declaration of variables provided by ABAQUS 

2. Declaration of local variables (used within the UMAT during calculations) 

3. Definition of material properties and variable initialization 

4. Calculation of viscoelastic responses 

5. Calculation of viscoplastic responses 

6. Update of the stress vector 

7. Return of output quantities to ABAQUS 

All calculation steps are documented in the UMAT provided in Appendix A. 

After the displacements are calculated, the stress vector and the stiffness matrix are 

updated and returned back to ABAQUS at the end of the UMAT. 

At the beginning of each step increment calculation, ABAQUS provides certain 

variables that may be used in the UMAT calculations. It is mandatory that these variables 



www.manaraa.com

 

 107 

 

be declared and imported into the UMAT. Therefore the first step when creating a 

UMAT is to properly declare the variables that ABAQUS is passing onto the UMAT. 

The syntax for this declaration is indicated in the documented UMAT in Appendix A. 

Local variables are declared next. These variables are used in the constitutive model 

calculations and are not transferred back to ABAQUS. All material property values are 

also defined at this location for simplicity.  

After variable declaration is complete, the constitutive model calculations are 

coded, starting with the viscoelastic component. The objective is to determine the stress 

vector at the end of the step increment induced by viscoelastic strains. The first step is the 

calculation of pseudo strain. This was achieved by using the recursive algorithm 

proposed by Simo and Hughes (1998) based on the strain history provided at the 

beginning of the step increment. The principal strain tensor is calculated and inversely 

ordered (p33>p22>p11) to accommodate the axis of symmetry at the principal axis 3. 

Accordingly the direction cosines matrix is adjusted to reflect this transformation. This is 

incorporated to comply with the locally transverse isotropy induced by damage in 

Schapery’s theory. Recall that the UMAT is executed at the integration point level. At 

every step increment, the load is changing, either increasing/decreasing or simply moving 

from one location to another when a moving load is simulated. Although the principal 

axes are continuously rotating for a given node as the wheel moves on the surface, it is 

assumed that there is no rotation within the step increment.  

Stresses are computed using the principal pseudo strains and transformed back 

into global stresses. This process was described in greater detail in Chapter 2 and is 

documented step-by-step in the UMAT. In addition to the stress vector, the stiffness 
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matrix must also be calculated. The stiffness matrix is the derivative of stress with respect 

to strain increment at the end of the step. The recursive algorithm by Simo and Hughes 

(1998) is used. Recall that all calculations are done at the local coordinate system (i.e., 

the principal pseudo strains were calculated in the local coordinate system). Therefore the 

local stiffness matrix and local principal stress vector are transformed back into global 

stiffness matrix and global stress vector using the direction cosines matrix defined 

previously. 

The final step to complete the viscoelastic calculations is the damage update. A 

small perturbation in the damage variable is induced and the variation in the pseudo work 

is computed. The final value for the damage variable is computed using the damage 

evolution law. The process is also described in Chapter 2 and fully documented in the 

UMAT provided in Appendix A. 

Time-temperature superposition was considered the same way as provided in the 

model development. Only constant temperature conditions are considered in the 

implementation. ABAQUS is capable of simulating variations of temperature over time. 

However, incorporating varying temperatures was beyond the scope of this research. 

The viscoplastic component is initiated by computing the principal stress 

invariants from the current stress vector. The new stress vector is calculated from the 

strain increment provided by ABAQUS and the stiffness matrix computed in the 

viscoelastic component. Viscoplastic strains are calculated following a sequence of steps 

to determine if viscoplastic flow has occurred based on the position of the principal stress 

vector in relation to the HiSS flow surface. If flow has occurred, the point on the HiSS 

surface that is normal to the applied stress point must be determined. This was 
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accomplished by using a Newton-Raphson algorithm (Gibson, 2006). The NR algorithm 

provides the stress vector at the HiSS surface, the normal vector to the surface in the 

direction of the applied stress (strain trajectory) and the relative distance from the applied 

stress to the hydrostatic plane. After the calculation of viscoplastic strains is completed, 

the global stress and strain vectors are updated and returned back to ABAQUS. 

It is important to note that the final objective of the UMAT is to provide the stress 

vector and the stiffness matrix, both at the global coordinate system, at the end of the step 

increment for each node in the problem.  

Coding and debugging the UMAT was a difficult task. Any error associated with 

the FORTRAN code had to be debugged outside ABAQUS. The interface and interaction 

between the UMAT and ABAQUS is not user friendly and no additional information 

about the source of error is the code is provided. In order to expedite this process, a 

standalone code of the UMAT was created. The standalone version included steps to 

create loading scenarios that were otherwise provided directly by ABAQUS. The entire 

code was then debugged using the Intel™ Fortran compiler. This proved to be vital in the 

debugging efforts. 

5.3.1. Numerical Difficulties and Simplifications 

Some difficulties were encountered during the development of the UMAT. The 

viscoelastic component was adapted from a previous work done by Hinterhoelzl (1999). 

His UMAT was written to simulate solid propellant for rockets. The adaptation to asphalt 

concrete required redoing all the damage functions and the procedure for updating the 

damage variables. A slightly different recursive algorithm was implemented to compute 
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pseudo strains in the hope that it would expedite the calculations. In the end, the 

viscoelastic component was the most time consuming part of the analysis. A full 3-D 

representation of one moving load cycle required about 50 minutes of computation time, 

of which 40 minutes were exclusively dedicated to the viscoelastic component. 

The main objective of this research is the analysis of permanent deformation at 

high temperatures using the viscoplastic component of the model. A simplified UMAT 

was therefore created in which the viscoelastic component was replaced by simple 

isotropic elasticity. The elastic properties were determined from the dynamic modulus 

master curve of the asphalt concrete for the desired temperature and loading rate in the 

pavement. 

The analysis of one moving load cycle using the new UMAT required less than 10 

minutes of computation time. This approach was found to have little effect on the 

predicted permanent deformations, especially at the intended simulations at high 

temperatures. Details and examples are provided in Chapter 6. 

Another difficulty faced during the development of the UMAT was the ill-

conditioned solution of the HiSS function at the intercept with the volumetric stress 

invariant axis, described in Eq. (75). The normal to the HiSS surface at the volumetric 

axis is undefined. The surface function intercepts the volumetric axis in a non-normal 

angle, which makes the normal undefined. Since the Perzyna-HiSS model assumes 

associated flow, the direction of the incremental viscoplastic strain vector is always 

normal to the yield surface. Due to the undefined normal vector of the function at the 

intercept, there are stress state regions where the normal vector cannot be computed. 
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Figure 40 describes this problem in more detail. It shows the HiSS surface in the 

stress invariant space. The area marked in the plot and identified by a dotted line is the 

region where normal vector to the HiSS surface are undefined. For illustration, 4 critical 

stress paths induced by a moving wheel at different locations in the asphalt concrete layer 

are plotted: (a) point located at the surface and center of the wheel path, (b) below the 

center of the wheel path at the bottom of the layer, (c) surface and far outside the rutting 

profile, and (d) below the center of the wheel path and 50 mm from the surface. None of 

the critical stress paths were located in the undefined normal vector region. The 

laboratory tests for model calibration were all done in compression, so none had stress 

paths in the zone where the problem of an undefined yield surface occurs. However, this 

problem did occur when the UMAT was applied to pavement structures and was the 

source for numerical instabilities. 

 

Figure 40. Example of HiSS surface and the limit where normal vectors to the surface can 
be calculated. 
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At first, it was thought that only points in pure tension would be susceptible to 

this problem. A state of pure tension is not usual in pavements, but rather a combination 

of tension and compression. Investigations revealed that the instability problems 

developed at undisturbed elements near the boundaries of the problem domain when 

subjected to small stress levels. It was unclear whether this problem developed during 

attempts to reach force equilibrium during or at the end of a given load increment. During 

all the checks and tests to identify the problem, the location remained confined to regions 

near the boundaries and at low stress levels. Locations critical to the analysis (e.g., 

around the wheel path) were not affected by this problem, as shown in Figure 40. 

Therefore the simple solution was to implement a check during the viscoplastic strain 

calculations to identify if the stress vector was within the undefined normal zone in the 

model. When the stress point was found within the undefined normal zone, no 

viscoplastic flow was assumed. Given the remote locations of the problem areas and the 

infrequency of the instability, this assumption seemed appropriate to address the issue. 

5.4. Model Verification 

The implementation of the UMAT was verified using tests performed previously 

by Gibson, 2006. This provided an independent verification without the extra costs and 

effort of running new tests.  

Gibson (2006) conducted several tests for calibrating the viscoplastic model 

during its development. One was chosen for this verification. It consisted of a creep and 

recovery test conducted in uniaxial compression at fixed stress level and varying loading 

times. The test schematic is provided in Figure 41. Two test results were used, one 
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unconfined and one confined. Figure 42 and Figure 43 shows the test results and the 

predictions obtained during calibration (Gibson, 2006), and the predictions obtained 

when the tests were simulated using ABAQUS. The comparison between predicted 

during calibration with predicted using ABAQUS show very good agreement, indicating 

that the viscoplastic model is successfully implemented in ABAQUS. 

 

Figure 41. Schematics of creep and recovery test at fixed stress level and varying loading 
time. 
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Figure 42. Fixed stress test with 1,500 kPa deviator stress, unconfined, tested at 35°C. 

 

 

Figure 43. Fixed stress test with 1,500 kPa deviator stress and 250 kPa confining stress, 
tested at 35°C. 
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5.5. Summary 

This Chapter provided a summary of key aspects and steps required to simulate 

nonlinear structural response using the finite element method. It also described the 

implementation of the viscoelastic-viscoplastic model into an ABAQUS user-defined 

material model subroutine or UMAT. Given the difficulties in finding good 

documentation on how to write and debug UMATs, the UMAT developed in this 

research was extensively documented in order provide some clarity on the development 

process that can serve as a template for future studies. Difficulties during the model 

implementation were also discussed and the approaches for overcoming these difficulties 

were presented. Finally a simple, minimum cost, independent validation was presented 

based on previous results using the same model formulation but calibrated for a different 

mixture. The results suggest that the code implemented in the UMAT yields results that 

are in good agreement with the model formulation used during its initial development. 
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Chapter 6  Numerical Applications 

6.1. Introduction 

The implementation of the viscoplastic constitutive model into the ABAQUS 

finite element code was an essential step towards fully mechanistic predictions of 

permanent deformation in asphalt concrete pavements. The model provides the means for 

directly simulating the material behavior that leads to rutting. This chapter describes a 

few applications of the finite element model. The objective is to use these applications to 

provide insights into the rutting problem. 

The effect of simulating a moving wheel versus the more common bouncing 

wheel approach is investigated and the importance of principal stress rotations and shear 

stress reversals induced by the moving wheel is evaluated. The effect of pavement type 

on the rutting profile and its development over time is also examined; this provides the 

basis for the development of a mechanistic approach to improve the empirical rutting 

model used in the current Mechanistic-Empirical Pavement Design Guide (MEPDG), a 

pavement design tool currently recommended by the American Association of State 

Highway Transportation Officials (AASHTO). And finally one field section from Federal 

Highway Administration’s Accelerated Loading Facility (ALF) is simulated with the 

finite element model and the results are compared with field measured permanent 

deformation.  
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6.2. Simplified Finite Element Modeling Approach 

The commercial finite element package ABAQUS™ was used to simulate 

pavement permanent deformations in this research. The UMAT developed for the 

viscoelastic-viscoplastic constitutive model described in Chapter 5 was used for all of the 

analyses presented here.  

Most of permanent deformation in pavements occurs at high temperature when 

the binder has low viscosity and is thus more fluid. In this condition, the aggregate 

skeleton is responsible for carrying most of the traffic load. Plastic deformations are 

expected as consequence of air voids reduction (volumetric deformations) and particle 

reorientation (shear deformations). The influence of the binder viscosity is to cause a 

delay in the material’s response to loading. The viscoplastic behavior is the dominant 

cause of permanent deformations. At high temperatures, viscoelastic effects are not 

significant and there is far less development of microcracks and damage than at low 

temperatures. 

An example of the dominant effect of viscoplastic behavior in asphalt mixtures at 

high temperatures can be seen in Figure 44. This figure shows numerical simulations of 

creep and recovery tests on an asphalt concrete mixture at two different temperatures, 

19°C representing a moderate temperature and 45°C a high temperature. (45 °C was 

chosen because it was the temperature during the accelerated load testing analyzed later 

in this Chapter.) It can be seen clearly from the figure that the magnitude of viscoplastic 

strains and its contribution to total strains is significantly magnified when the temperature 

is high. For the same load duration and magnitude, the viscoplastic strain is nearly eight 

times higher at 45 °C than it is at 19 °C.  
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Figure 44. Influence of temperature on viscoplastic behavior of asphalt concrete in a 
simulated creep and recovery test. 

The computational time required to predict the viscoelastic-viscoplastic response 

of one moving load cycle on a pavement structure was about 50 minutes on a quad core 

2.6 GHz Intel™ Core 2 Extreme with 4 GB of RAM running 64-bit Windows XP. This 

may be reasonable for a few cycles, but the execution time becomes prohibitive if one 

intends to simulate hundreds or even thousands of cycles. 

One way to reduce computational time is to shut off the viscoelastic component of 

the model and replace it with a much simpler constitutive equation. As illustrated in 

Figure 44, the viscoelastic continuum damage contribution to the total strains is very 

small at elevated temperatures. The viscoelastic continuum damage model, which 

governs the pre-yielding response, was therefore replaced by a simple isotropic elastic 
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instantaneous elastic modulus based on temperature and load frequency as related to the 

tire speed. The EVP UMAT is presented in the Appendix B. 

The creep and recovery test simulations using the complete VEVP model (Figure 

44) were repeated using the alternative EVP model. The results are shown in Figure 45. 

The final total residual strains are the same for both temperatures, which is expected 

since the viscoplastic component is the same in both constitutive models. At the lower 

temperature, the models predicted very different responses to the peak strain and the early 

portion of the recovery, reflecting the influence of the viscoelastic response. However, 

the difference between the two models is negligible at the higher temperature both before 

and after the peak strain. Based on these results, it was decided to use the alternative, 

simpler constitutive model for the numerical simulations of pavement structures at high 

temperatures. 

 

Figure 45. Comparison between viscoelastic-viscoplastic and elasto-viscoplastic 
simulation of creep and recovery at two different temperatures. 
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6.3. Influence of Shear Stress Reversals 

Permanent deformation accumulates with load cycles over the pavement’s life. 

Simulating thousands or millions of cycles is a daunting task even with current 

computational capabilities. The most realistic approach is a 3D simulation of a moving 

wheel. Since such analysis requires great computational effort, simplifications have often 

been used in the past to cut computational cost and time. 

The most typical simplification is the assumption of bouncing wheel instead of a 

moving wheel. The bouncing wheel applies a cyclic loading with a period equivalent to 

the load duration at a certain travel speed. Bouncing wheel analyses can usually be 

performed assuming 2D axial symmetry, which greatly streamlines the calculations. 

However, a bouncing wheel does not induce shear stress reversal, which is a key 

mechanism in the development of plastic deformations, especially for the distribution of 

permanent strains within the asphalt concrete layer. 

Limited field studies have found that moving traffic loading on pavement test 

sections produced higher permanent deformations than did plate loading with similar load 

magnitude and number of cycles. When the wheel completes a full pass over a fixed 

reference point in the pavement structure, the direction principal stresses rotate, causing 

shear stress reversals (e.g., compression to tension or vice-versa). Note that a complete 

shear reversal requires a 180° or more rotation of the principal stresses. In this 

dissertation, the term rotation of principal stresses refers to a full rotation that causes 

shear stress reversals. This is consistent with the terminology found in the literature 

where these two terms are used interchangeably to describe the same phenomenon.  
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This phenomenon has been studied more intensely in the unbound layers, where 

the effects of shear stress reversals can cause large plastic displacements. Investigations 

carried out the University of Nottingham’s accelerated pavement testing facility suggests 

that pavements under moving loads develop twice as much rutting as pavements under 

cyclic plate loading, as illustrated in Figure 46 (Brown et al., 1996, 1999). Moreover, 

bidirectional loading is more harmful than unidirectional loading due to the two-way 

shear reversals caused by bidirectional traffic (Brown et al., 1999). Similar tests at the 

Laboratoire Central des Ponts et Chaussees found that the permanent strains in the 

granular layers under moving wheel loading were approximately three times as large as 

those under cyclic plate loads (Hornych et al., 2000). Kim and Tutumluer (2005) 

examined realistic pavement stresses induced on aggregate base layer by moving aircraft 

loads and developed models to predict rutting in the unbound layer that considered the 

shear stress reversal. 

Equivalent field studies of paved pavement sections have not been found in the 

literature. Even though the stress rotations are more pronounced in the surface layer that 

the underlying unbound granular base in a typical flexible pavement structure, there has 

been only limited evaluation of the effect of these rotations on the asphalt concrete, none 

at full scale experiment, nor modeling or numerical simulations. Crockford (1993) 

performed some experimental evaluation of stress rotation effects in asphalt concrete 

under laboratory conditions. Based on hollow cylinder testing, Crockford suggested that 

stress rotations cause about 2.5 times more plastic strain than specimens tested without 

the stress rotations. 
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Figure 46. Permanent deformation comparison between a moving wheel load and 
repeated vertical load (Brown et al., 1996). 

A simple exercise was performed to evaluate the ability of the Perzyna-Hiss 

viscoplastic model to capture the different material response for stress states with and 

without shear stress reversal. The stress states induced by a moving wheel were obtained 

numerically using the 3D model described in Chapter 5. All materials were modeled as 

linear elastic, as the intent was just to approximate the induced stress history caused by a 

moving load. The stress distributions over the loading cycle were computed at the 

approximate location of the maximum shear stress (i.e., about 50 mm or 2 in below the 

pavement surface at the edge of the wheel). Figure 47 describes the computed normal and 

shear stresses at this location as a function of time. 

The case without shear stress reversal was modeled using the stress history for a 

sinusoidal quasi-static load applied at the center of the loading path. The period of the 

sinusoidal loading was set equal to the load duration simulated in the moving wheel 

analysis. Stress histories were computed for the same approximate location of the 
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maximum shear stress. Figure 48 describes the computed normal and shear stresses at this 

location as a function of time. 

 

Figure 47. Stress distributions over time at the location of maximum shear for one 
moving wheel pass. 

 

Figure 48. Stress distributions over time at the location of maximum shear for one 
bouncing wheel load. 
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The stress distributions shown in Figure 47 and Figure 48 were then applied to a 

single 3D element using the EVP constitutive model described earlier. The stress 

histories were applied 1,000 times. 

The comparison of permanent strains computed in the two scenarios is shown in 

Figure 49. The impact of shear stress reversal is clear. The loading with the shear stress 

reversal induced significantly higher permanent strains than the loading without it. It is 

important to note that the results represent the induced strains at the point of maximum 

shear stress in the pavement structure. In the case of the bouncing wheel load, the rate of 

permanent deformation reduced and then leveled off after about 300 cycles. This is 

caused by the movement of yield surface towards the stress point (refer to Figure 14 for 

theoretical details) and is termed viscoplastic saturation. A better representation of the 

yield surface and the stress state paths at the location of maximum shear is provided in 

Figure 50, in terms of shear and volumetric stress invariants, J2D and I1. In the case of the 

moving wheel, the stress state path has a larger excursion above the flow surface during 

most of the loading cycle, as shown in Figure 50. As a result, more plastic strain occurs 

as it takes longer for the yield surface to reach the stress state path induced by the moving 

wheel than it does by the bouncing wheel. 
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Figure 49. Comparison between permanent vertical strains induced by loading histories 
with and without principal stress rotations. 

 

Figure 50. Comparison between stress state paths induced by moving and bouncing 
wheel at the location of highest shear stress. 
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This simple example showed that the viscoplastic model is capable of capturing 

the effects of shear stress reversals on permanent deformations. The large differences 

between the plastic strains in the moving and bouncing wheel cases in this exercise are 

possibly magnified as a consequence of the constant loading histories over all loading 

cycles. In the field, the state of stress is constantly changing as the materials deform, 

harden/soften, and develop locked-in stresses under the repeated loads. More realistic 

differences are expected when the full pavement section is simulated. 

The 3D finite element analyses for both the moving and the bouncing wheel 

loadings were repeated with the surface HMA modeled using the EVP model. The elastic 

component of the HMA elasto-viscoplastic model was computed from the dynamic 

modulus master curve for the appropriate temperature and loading frequency. The 

unbound base layer and subgrade are modeled as linear elastic materials as before. The 

elastic material properties are summarized in Table 10. The viscoplastic material 

properties for the asphalt concrete were described in Table 8 in Chapter 4. 

Table 10. Material properties used for studying the effects of the bouncing versus the 
moving wheel. 

Layer Thickness 
(mm) 

Elastic Modulus 
(MPa) 

Poisson’s 
Ratio 

HMA (45 oC) 150 760.0 0.35 

Base 500 289.6 0.40 
Subgrade Infinite 89.6 0.40 

 

The numerical simulations were carried out for 500 cycles and the predicted 

rutting at the center of the wheel path is shown in Figure 51. The moving wheel produced 

1.6 times more rutting than the bouncing wheel. The rate at which rutting increases is 

also different. Viscoplastic strain saturation is evident in the bouncing wheel analysis, 



www.manaraa.com

 

 127 

 

while rutting increases continually throughout the moving wheel analysis, as expected 

and illustrated in Figure 50. The rutting values predicted in Figure 51 are small, 

compared to expected field rutting. The main reason is that the model doesn’t predict as 

much densification as occurs in the field. The problem of densification is further detailed 

later in this Chapter where field measurements are compared with predictions obtained 

from the finite element analysis. 

 

Figure 51. Comparison between moving and bouncing wheel finite element simulations. 
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strain distribution from the moving wheel simulation is qualitatively similar to the 

distribution observed in field trenches. Results from the MnRoad test track are plotted in 

the inset for comparison. The majority of rutting measured in the field comes from the 

top two lifts, which corresponds to about 100 mm (4 inches). The majority of residual 

strains predicted occur at the top 100 mm, with a peak at about 30 mm (1.2 inches). 

Although the strain distribution from the bouncing wheel also reflects the expected field 

distribution, the results are not in the same good agreement. 

 

Figure 52. Comparison between strain distributions within the asphalt concrete surface 
layer when moving and bouncing wheel are considered. MnRoad rutting distribution 

from trench studies is shown in the inset. 
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was no viscoplastic saturation in the moving wheel simulations as permanent deformation 

continued to accumulate with each load pass, while a significant reduction in the rate of 

permanent deformation with increasing cycles was observed for the bouncing wheel load. 

In addition, the distribution of permanent strains within the asphalt concrete layer was 

significantly different between the moving and bouncing wheel analyzes. For qualitative 

comparison, results from MnRoad trench studies were presented to illustrate the good 

qualitative agreement between distributions measured in the field and the predicted 

distribution obtained from the moving wheel simulations. 

6.4. Practical Applications of Finite Element Simulations 

One of the purposes of numerical simulation is to provide insight into phenomena 

that would otherwise be difficult or cost-prohibitive to evaluate experimentally. The 

modeling effort described in this research can be used to evaluate different pavement 

types, provide understanding of behavior under special loading conditions (e.g., new 

tires, new loading gears), and ultimately support the development of improved design 

techniques and pavement performance models by extracting simplified relations based on 

observations drawn from the complex analyses. 

As an example, three distinctly different pavement types were simulated and the 

predicted rutting results are compared. The magnitude of rutting computed at the center 

of the wheel path and the transverse permanent deformation profile are evaluated and 

discussed. The vertical permanent strain distributions are also examined and used to 

create pavement type-specific depth functions for the MEPDG. 
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6.4.1. Predicted Rutting Comparison between Different Pavement Structures 

An example comparative study is provided in this section. Three pavement types 

were simulated using the finite element model described earlier. The objective was to 

compare quantitatively and qualitatively the predicted asphalt rutting. Of particular 

interest were the relative magnitudes of the maximum rutting and the shapes of the 

rutting transverse profiles. 

The first structure was a conventional flexible pavement consisting of asphalt 

concrete as the surface layer, granular crushed aggregate as the base, and the subgrade. 

The second structure was also a flexible pavement, but a full depth asphalt pavement with 

only one thick layer of asphalt concrete directly on top of the subgrade. The third 

structure was a composite pavement consisting of an asphalt concrete surface layer, an 

underlying stiff Portland Cement Concrete slab, and the subgrade. The properties of the 

asphalt concrete, granular base and subgrade were as defined previously in Table 8 

(viscoplastic properties for the asphalt concrete) and Table 10 (elastic properties for all 

layers). The elastic properties of the stiff layer in the composite pavement were defined 

as 30 GPa for the elastic modulus and 0.25 for the Poisson’s ratio. Figure 53 shows the 

three structures. Five hundred moving wheel load cycles were simulated at an asphalt 

concrete temperature of 45°C for all pavements. 

The first difference noticeable between the results was the evolution of rutting 

over number of cycles. Figure 54 summarizes the asphalt rutting over load cycles for all 

three pavement structures. Rutting was computed as it is normally measured in the field 

(i.e., using a straightedge, which gives total rutting as the combination of settlement and 

heave – see Figure 1). The composite pavement produced the least rutting, about one-
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third of that predicted for the conventional flexible pavement at 500 cycles. In addition, 

the characteristic primary stage produced significantly less rutting and ended sooner than 

in the flexible pavement cases. 

The conventional flexible and full depth pavement structures produced similar 

rutting predictions. The primary stage is visibly longer than in the composite case and the 

rate of rutting is higher. It would generally be expected that full depth asphalt pavements 

exhibit less rutting than a comparable conventional flexible pavement. However, the 

analyses predicted slightly greater rutting for the full depth structure than for the 

conventional flexible. This is because only rutting of the asphalt is considered in these 

analyses. The additional rutting contributions from the granular base and subgrade layers 

in real flexible pavements would likely give larger total surface rutting for the 

conventional flexible structure. 

Another explanation for the unexpectedly small difference in predicted asphalt 

rutting between the two flexible pavement structures is the assumption of constant 

temperature throughout the asphalt layers. This does not reflect real scenarios in which 

daytime high temperatures decrease with depth in the layer, which results in a stiffer and 

more permanent deformation resistant material at depth, particularly for the full depth 

asphalt layer.  
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                    (a)                                            (b)                                             (c) 

Figure 53. Pavement structures: (a) conventional flexible, (b) full depth asphalt concrete, 
and (c) composite. 

 

 

Figure 54. Asphalt rutting for different pavement structures. 
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rutting transverse profile predicted for each of the structures is different because of the 

different distributions of stresses within the asphalt layer. 

Permanent deformation consists of settlement underneath the tire load and heave 

immediately outside the loaded area. The rutting profile observed in the flexible 

pavement case is typical of a structure with good quality base. In these cases, the stresses 

build up in the surface layer mainly underneath the edge of the tire. This stress build up is 

the cause of viscoplastic flow in the direction from the center of the load towards the 

edge of the tire, thus causing substantial heave at the edges of the wheel paths. 

The full depth asphalt concrete pavement produces more rutting underneath the 

tire load than heave at the edge. It can also be noted that there are permanent 

deformations beyond one meter from the center of the load. This is an indication that the 

geometric boundaries may have been insufficiently far away for the full depth analysis. 

This issue was not observed in any of the other simulations performed. 

The composite structure produced the least permanent deformation of all 

pavements simulated, both in terms of settlement and heave. The PCC layer supports the 

majority of the load. The surface layer remains in compression at the center of the load 

through its thickness, and there are more confining effects from the horizontal stresses. 

The consequence is the prediction of less rutting, which matches observations from field 

structures. One interesting observation for the composite pavement is the uneven 

distribution of rutting underneath the tire. The plot suggests that there is a gradient of 

deformation increasing in the direction towards the edge of the tire. This is likely due to 

the higher confinement at the center and increased shear stresses at the edge of the tire. 
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Figure 55. Comparison of rutting transverse profiles for different pavement structures. 
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empirical rutting models, such as those in the MEPDG, that rely on depth adjustment 

factors for the predicted permanent strains. 

 

Figure 56. Comparison of permanent strain distributions with depth for different 
pavement structures. 
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in which p is the plastic strain, r is the elastic strain, T is the temperature, N is the 

number of load applications. This function is based on the recoverable vertical strain 

computed at peak load using linear elasticity models. The magnitude of predicted 

permanent deformations is a function of number of load applications and the temperature 

of the asphalt concrete. 

Rutting is the permanent deformation after removal of the load. As described in 

Chapter 2, previous studies have suggested that the material at the bottom of the asphalt 

concrete layer yields under triaxial confined compression conditions and does not 

develop horizontal tensions as predicted by elastic analyses. Instead, the plastic flow 

causes the horizontal stresses remain compressive at all times. When the load is removed, 

these compressive stresses are locked in the structure creating a multidimensional 

confinement which induces residual expansive vertical strains at the bottom of the layer. 

The permanent deformation resulting from the residual compressive strain distribution is 

concentrated in the upper portion of the layer, as confirmed by field trench studies.  

Since the plastic strains predicted in the MEPDG approach using Eq. (80) are 

proportional to the mechanistically determined elastic vertical strain, the majority of 

rutting is predicted at the bottom of the layer, contrary to field experience. Therefore a 

depth correction function was implemented in the MEPDG to adjust the computed plastic 

strain as described in Eq. (81). 
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2  ACAC hhC  

in which σ3 is the depth correction function, depth is depth to the strain calculation 

location, hAC is the thickness of the asphalt layer, and the other variables are as defined 

previously. The depth correction function assumes that the mechanisms and distributions 

of permanent strains are similar for all asphalt concrete layers, with no differentiation by 

pavement type. 

The EVP finite element analyses for the three pavement types (conventional 

flexible, full depth asphalt, and composite) provide the actual distribution of residual 

plastic strains vs. depth through the asphalt layer. The comparison between the residual 

strain distribution predicted by the EVP finite element analysis and the MEPDG 

computed residual strain distribution is of interest. For better visualization, the vertical 

strain distributions were normalized. The intent is to compare the shape of the 

distribution not the magnitude of the strains, therefore a unique multiplier was 

determined as such that the resulting rutting from the integration of the residual strain 

distribution was the same. The EVP finite element residual strains were used as 

reference. The elastic strain distribution was normalized using the same multiplier of the 

MEPDG computed residual strain distribution. 

Figure 57 illustrates the normalized vertical strain distributions in the asphalt 

concrete layer of the conventional flexible pavement structure. It shows the elastic strain 
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computed at peak load and the two residual strain distributions under the center of the 

tire: (1) one named residual computed using the EVP finite element model, and the other 

named MEDPG computed residual. The MEPDG residual strains were calculated using 

the current depth function. It is clear from the figure that the MEPDG computed residual 

strains do not match the actual residual strains computed in the finite element analyses. 

A new depth function was developed to better fit the residual response predicted 

by the finite element model. The functional form was kept consistent with the MEPDG 

approach, but the coefficients were adjusted to provide a best fit to the EVP plastic strain 

values. The result is shown in Figure 57 and in Eq. (82). 

 

Figure 57. MEPDG depth function analysis for the conventional flexible pavement. 
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in which the parameters are as described previously. 
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The above approach can be extended to the full depth asphalt concrete and 

composite pavements. Figure 58 shows vertical strains distributions in the first 150 mm 

of the asphalt concrete layer of the full depth structure. The shape of the MEPDG-

determined plastic strain distributions is very different from the residual strain computed 

from the EVP analysis. However, when a new depth correction function is calibrated 

from the EVP strains, the results are in much better agreement. The new depth function 

for this case is provided in Eq. (83). 

 

Figure 58. Calibrated depth function results for the full depth asphalt concrete pavement. 
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plastic strain does not agree with the residual strain computed from the finite element 

analysis. Again, the depth correction function was recalibrated to provide better 

agreement between the two distributions. The new depth function for this case is 

provided in Eq. (84). 

 

Figure 59. Calibrated depth function results for the composite pavement 

  

  (84) 

  

in which the parameters are as described previously.  

The depth function equation can be generalized as shown in (85) and the various 

coefficients for each pavement type can be compared in Table 11. 
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Table 11. Structure-based depth function coefficients . 

Pavement 
Type 

a a1 a2 a3 b1 b2 b3 

Default 
MEPDG 

0.3282 -0.1039 2.4868 -17.342 0.0172 -1.7331 27.428 

Conventional 
Flexible 

0.5383 0.0656 2.5150 -17.337 -0.4334 -1.8082 27.4155

Full Depth 
AC 

0.8158 0.0629 2.5164 -17.337 -0.4592 -1.8131 27.4147

Composite 0.5335 0.0629 2.5142 -17.338 -0.4592 -1.8125 27.4146
 

6.4.3. Conclusions 

This section described two immediate applications of the mechanistic model for 

the permanent deformations in asphalt concrete layers. The first showed comparative 

analyses between three distinct pavement types with asphalt concrete surface layers. The 

results suggested that the finite element application is capable of identifying fundamental 

differences on how rutting develops in different pavement structures. There were 

differences in the evolution of permanent deformation over load cycles, different 

transverse profile patterns, and different distributions of rutting within the layer. The 

results agree qualitatively with expected field behavior as determined by trench data from 

MnRoad and Westrack.  

The second application applied the finite element modeling to improve an existing 

mechanistic-empirical model for predicting asphalt layer rutting. Current mechanistic-

empirical models, such as the MEPDG, rely on regression models to transform 

mechanistic responses into distresses. Discrepancies between elastic predictions of 

response and field expected permanent strain distribution are resolved by using an 
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empirical depth correction function. Since the EVP finite element analyses had shown 

that the shape and magnitude of the permanent strain distribution varies significantly with 

pavement type, pavement-specific depth functions are thus necessary (although not 

included in the MEPDG). 

The finite element model developed was successfully used to derive pavement-

specific MEPDG depth correction functions for three different pavement structure types. 

The permanent strain distributions after one cycle were used to recalibrate the MEPDG 

depth function. The new depth functions have the same mathematical formulation as the 

current MEDPG’s depth function to facilitate implementation; only the coefficients in the 

function are recalibrated. The new depth functions produce plastic strains predictions that 

are in much better agreement with mechanistically computed residual strains. This 

approach can be used in future enhancements of the MEPDG. 

6.5. Field rutting predictions 

6.5.1. Description of FHWA ALF 

Federal Highway Administration (FHWA) constructed 12 full-scale lanes of 

asphalt concrete pavements in 2002 at its Accelerated Loading Facility (ALF) at the 

Turner-Fairbank Highway Research Center in McLean, VA. The experiment, the second 

of its nature in this facility, was entitled “Full-Scale Accelerated Performance Testing for 

Superpave and Structural Validation” (Gibson, 2011). The objective of the study was to 

validate and refine changes being proposed to the Superpave™ asphalt binder 

specifications. 
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The layout of the experiment is presented in Figure 60. Each lane had a width of 

4.0 m (13 ft) and a length of 50 m (165 ft). Each lane had four test sites used in various 

studies. All lanes consisted of an asphalt concrete surface layer on top of an unbound, 

dense-graded, crushed aggregate base (CAB) over a uniformly prepared, AASHTO A-4 

subgrade soil. The total thickness of the HMA and CAB is 660 mm (26 in). Lanes 1 

through 7 were constructed with an HMA layer thickness of 100 mm (4.0 in) and were 

used to evaluate cracking, while lanes 8 through 12 have a thickness of 150 mm (6.0 in) 

and were tested for permanent deformation. Each lane was constructed with a different 

binder; these are listed in Figure 60. 

 

Figure 60. Layout of the 12 as-built pavement lanes (Qi et al., 2004). 

The results provided by FHWA for this research came from Lane 11. The binder 

in this lane was modified with Styrene-Butadiene-Styrene with Linear Grafting (SBS-
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LG). The Superpave binder grade was PG 70-28. The mixture gradation was 12.5 mm 

dense-grade following the Superpave gradation specifications. The design binder content 

was 5.3% at an air voids of 4.2%. The base layer was crushed aggregate (CAB) with a 25 

mm (1 in) nominal maximum aggregate size. Additional details of binder, mixture 

characteristics and base material can be found at Qi et al. (2004). 

The tire used was a super single wide base tire 425/64R22.5. It is known that this 

type of tire induces greater damage than conventional dual tires, hence its advantage in 

accelerated load testing (Gibson, 2011). The tire pressure was 689 kPa (100 psi) under a 

total load of 44kN (10 kip). There was no traffic wander for the rutting portion of the 

experiment. 

Rutting was measured at the center of the wheel path using Layer Deformation 

Measurement Assemblies (LDMA), which simply measure the change in thickness of the 

asphalt layer as a consequence of accumulated permanent deformation. The LDMA setup 

is shown in Figure 61 – the rut depth measurements at the ALF did not include the side 

heaves. Seven LDMAs were installed per test site.  Different temperatures were used for 

specific groups of lanes and test sites depending on the intended distress development. 

For the rutting experiment, the temperatures were 45 °C and 64 °C. On lane 11, the target 

of this research, the temperature was kept constant at 45°C. The temperature was 

controlled by measurements obtained from thermocouples embedded in the pavement 

structure. Radiant heaters were mounted along the length of the ALF to provide a source 

of heat. 



www.manaraa.com

 

 145 

 

 

Figure 61. Layer deformation measurement assembly used to measure rut depth (Gibson, 
2011) 

Lane 11 received 300,000 unidirectional load passes. Figure 62 shows the 

measured rutting versus number of load passes. It is important to observe that by the time 

the first measurement was taken at 500 cycles, the accumulated permanent deformation 

was already at 2.5 mm (0.1 in). This accumulation represents 40% of the total permanent 

deformation observed at the end of the experiment. 

 

Figure 62. Rutting measurements at Lane 11 of the ALF. 
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bottom and top of the lift are often compacted to a lower density than material at the 

center (Masad et al., 1999). As a consequence, the distribution of air voids is non-uniform 

through the thickness of the layer (Hua, 2000). Mixture densification under traffic 

loading is likely to be the cause of such large and early deformation, especially near the 

surface, where high air voids compress rapidly under even small amounts of traffic. 

Air voids were measured from core samples taken from the center of the 

wheelpath and compared with samples taken from untested area not influenced by the 

loading. It was found that densification had indeed occurred during the ALF rutting 

experiment and that the reduction in the air void content averaged 1.5% (Gibson, 2010). 

The densification primarily occurred at the top and bottom of the layer where high air 

voids is normally expected due to non-uniform compaction. Therefore it was expected 

that the SBS-LG mixture that was initially compacted to a 5.4% average air voids during 

construction densified to about a 3.9% average air voids during the early load cycles. 

This densification corresponded to 2.25 mm of the total rutting measured, almost all of 

the early rutting observed in Figure 62. 

6.5.2. Numerical Simulation 

The material properties described in Table 10 were used to characterize the elastic 

behavior of the layers. The elasto-viscoplastic UMAT was used to model the asphalt 

concrete layer. The properties described in Table 8 in Chapter 4 were used. 

Ideally all 300,000 cycles applied at the ALF experiment in Lane 11 would be 

replicated in the finite element simulation. Initially 100 cycles were simulated. The time 

required to run these simulations was 3.5 days, or 50 minutes per cycle on average. The 
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computer used in these simulations was the same as described earlier. Based on this 

initial evaluation, it was concluded that simulating a large number of cycles would be 

impractical because of the prohibitive computational time and storage requirements for 

the computed results. The alternative used was to design a load equivalency procedure in 

which more cycles could be simulated without adding extra computational time and then 

attempt to extrapolate the results. 

There are many forms of applying an equivalent load to save time and effort in 

numerical analysis (Park, 2004; Yoo et al., 2006; Onyango, 2009). In the most common 

form the load is applied in one long step representing the entire accumulated load 

duration over the intended number of load repetitions. The main problem with this 

approach is that it resembles a load plate testing rather than a moving wheel load and thus 

cannot capture the principal stress rotations and shear stress reversals. This equivalent 

load approach also prevents the incremental development of residual stresses after the 

load is removed between cycles. It has been shown that residual stresses significantly 

affect the distribution of permanent strains through the asphalt concrete surface layer 

thickness (Schwartz and Carvalho, 2007, 2008). The better equivalent load approach is 

one in which the load duration is progressively increased to reflect more cycles while at 

the same time maintaining most of the development of residual stresses and other moving 

wheel effects. 

In the equivalent load procedure adopted for the ALF simulations, the first 20 

cycles are performed using the actual load pass time, which was equivalent to the ALF 

wheel speed of 18 km/h. After the first 20 cycles, the load duration is increased for each 

subsequent set of 20 cycles. For example, the load duration is doubled in the second set 
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of 20 cycles, hence providing the loading time equivalent of 40 cycles instead of 20. This 

process continues until the equivalent of 500 cycles have been simulated. The equivalent 

load procedure is illustrated in Figure 63. 

 

Figure 63. Load equivalency – equivalent accumulated load cycles versus tire pass. 

Figure 64 shows the rutting predictions for 500 cycles using the equivalent load 

procedure. The plot also shows the results for the first 100 cycles simulated without the 

equivalent load procedure. The comparison of this with the simulation using the 

equivalent loading scheme is very close, with an average difference of less than 0.16%. 

This suggests that the equivalent loading scheme can be used as an alternative for 

simulating large number of cycles sequentially, at least for practical purposes. The major 

advantage of this approach is that it preserves most of the effects of the moving wheel on 

stress distributions and consequently on permanent deformations. 
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Figure 64. Computed permanent deformation for 100-cycle sequential and 500-cycle load 
equivalent. 

The data shown in Figure 64 were used to extrapolate the predictions to the 

number of cycles applied to Lane 11. A power function was fit to the data and used to 

extrapolate the results to higher number of cycles. This did not provide good results, with 

the extrapolation significantly underpredicting the measured rutting. Examining the 

results from the finite element simulation, it was hypothesized that the predicted rutting 

had not yet fully reached the secondary stage and that therefore the power function 

coefficients had not stabilized. 

Power law functions were fit to the finite element model results for the first 500 

cycles in increments of 100 cycles. Linear regression analysis was used in the 

transformed logarithm of both predicted rutting and number of cycles. The transformation 

and the linear equation fit in log-log space is shown in Figure 65 for the first 100 cycles. 

The intercept of the linear equation corresponds to the multiplier of N in the power 
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It was noted that the multiplier of the power model was varying as more cycles 

were added to the dataset, thus indicating that the secondary stage had not been fully 

reached. An adjustment to correct this value was developed and the model fitted for 100 

cycles was used as reference, as follows: 

  
100

Na
AF f N

a
   (87) 

The ratio between the multiplier of power functions fitted to different number of 

cycles (aN) and the multiplier fitted to the first 100 cycles (a100) is shown in Figure 66. 

The adjustment factor, AF, took the form of a convenient power function dependent on 

the number of cycles, N, as follows: 

 0.164

100

0.47Na
AF N

a
   (88) 

 

Figure 65. EVP finite element predicted rutting for the first 100 cycles. 
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Figure 66. Ratio aN/a100 as function of number of cycles. 

The same approach was attempted for the slope of the power function. Although 

the slope variations were very small compared to those for the intercept, the power model 

extrapolations were very sensitive to small slope variation and the results obtained were 

not realistic. Therefore only the adjustment to the intercept was used. The final adjusted 

model is described in Eq. (89) and was used to predict the ALF field performance of lane 

11. 
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in which, RD is the rut depth at the center of the wheel path (mm), and N is the number of 

cycles. 

Measured rutting from lane 11 of the ALF experiment was compared with 

predicted values obtained from the ABAQUS analysis. Note that measurements at the 

ALF considered only rutting at the center of the wheel path and not the side heaves, 

therefore the predictions only took into consideration the settlement computed at the 
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same location. In this comparison, the deformation due to densification of the mixture by 

the early load passes was not considered. The calibration of the viscoplastic model used 

samples that were prepared at the average air voids obtained in the field for the entire lift 

of the asphalt concrete layer. Field compaction is not uniform, air voids are higher at the 

top and bottom of the lift than at the center. Therefore the calibrated model cannot 

capture accurately the behavior of the entire lift. For a better characterization, it would be 

necessary to calibrate the model using specimens at different air voids in order to capture 

the high densification that occurs at the top and bottom of the lift. 

The predicted rutting values using the fitted model described in Eq. (89) are 

plotted in Figure 67. The calculated early compaction due to traffic was removed from 

the measured rutting based on average densification measured in the field. As described 

previously, this densification was estimated as 1.5% of the asphalt layer thickness, which 

corresponded to an initial permanent deformation value of 2.25 mm. Overall, the 

comparisons between predicted and measured rutting are very reasonable considering the 

intrinsic variability of asphalt concrete and the unavoidable simplifications of the model. 

The predicted rate of deformation in the secondary stage matches the observed rate quite 

well. The consistent offset between the predicted and measured rutting yields a difference 

of 0.86 mm (30% of the total) at the end of the experiment at 300,000 cycles. However if 

expected errors in rutting measurements are considered, the predicted rutting falls almost 

within two standard deviations of the error, which is equivalent to a 95% reliability. 
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Figure 67. Predicted and measured rutting for the ALF lane 11. 

Rutting was also predicted using a bouncing wheel as a replacement for the 

moving wheel for comparative purposes. Figure 68 shows the comparison between the 

two predictions. The same adjustment process was applied to both simulations. The 
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Figure 68. Comparison between predictions using moving and bouncing wheel for the 
ALF lane 11. 
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values excluding the densification. The results were within two standard deviations of 

measured values, which corresponded to almost 95% reliability for predicted values. The 

consistent offset between the predicted and measured rutting yields a difference of 0.86 

mm (or 30%) at the end of the experiment at 300,000 cycles. 

Lane 11 was also modeled using a bouncing wheel as a replacement for the 

moving wheel. The same adjustment process and curve fitting was applied. Rutting 

predicted at the last cycle using the bouncing wheel was about 50% of the value 

measured. The use of a 3D model with a moving wheel reduced the error in the 

prediction by half as compared to the bouncing wheel analysis. 
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Chapter 7   Conclusions and Recommendations 

Rutting is a common distress observed in flexible pavements caused by the 

development of permanent deformation in layers of the pavement structure. It is defined 

as a longitudinal surface depression occurring in the wheel paths of roadways and 

upheaval along the sides of the rut. It can lead to structural failure and potential danger 

from hydroplaning. Rutting accumulates incrementally with small permanent 

deformations from each load application over the life of the pavement. 

Two mechanisms are the main causes of permanent deformation in asphalt 

concrete surface layers. Compaction, or densification, is the primary mechanism at initial 

stages of loading; it is characterized by volume change of the material underneath the 

wheel path. The second mechanism is defined as lateral movement of material 

underneath the wheel path caused by shear (i.e., distortion without volume alteration). 

These two mechanisms define the first two stages of rutting (see Figure 3). When enough 

shear deformation has occurred, the asphalt concrete undergoes rapidly increasing rates 

of shear deformation, leading to failure in the tertiary stage. In practice, most pavements 

are rehabilitated prior to reaching the tertiary stage to minimize the structural damage and 

avoid unsafe traffic conditions. The initial stage occurs over the first few hundreds or 

thousands of load applications, which is a very small portion of the pavement traffic life. 

Therefore, rutting modeling is usually restricted to the secondary stage. 

Several models were developed over the past 40 years that lay the foundation for 

the current mechanistic-empirical rutting models based on resilient strain. The current 

model used in the Mechanistic-Empirical Pavement Design Guide (MEPDG) is based on 



www.manaraa.com

 

 157 

 

vertical resilient strain and is calibrated using axial repeated load permanent deformation 

tests. An alternative model, termed the Westrack model, is based on maximum shear 

strain and calibrated using repeated shear tests. 

There are significant limitations to mechanistic-empirical models. The most 

fundamental limitation is the range of applicability of the model. The empirical model 

components are valid only for the conditions for which they were calibrated. 

Extrapolations beyond these conditions are risky. Moreover, most mechanistic-empirical 

(M-E) models rely on simple linear elastic predictions of mechanistic response. However 

most of materials used in pavement construction are not linear elastic. 

In addition, there are several issues not yet fully resolved in the framework for 

predicting rutting in the asphalt concrete layers using M-E models: (1) whether rutting 

should be modeled using axial or shear permanent strains; (2) dependency on linear 

elasticity theory to provide the critical pavement responses required in the model 

formulation; (3) the need for a depth correction factor to bring the predicted plastic 

strains into better alignment with those observed in the field; (4) related to issue 3, the 

assumption that the shape and form of plastic strain distributions are similar for asphalt 

concrete layers in flexible pavements versus asphalt concrete overlays on rigid 

pavements, which is generally not true; and finally (5) the difficulty of characterizing the 

entire rutting profile, including the contribution of heaving at the edge of the wheel paths. 

The key to understanding the rutting problem is to return to its physical definition. 

Rutting is the accumulated permanent deformation that remains after removal of the load. 

Rigorous modeling of permanent deformations using nonlinear finite element analysis 
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based on the more correct physical mechanism of residual deformations after removal of 

the load can provide important insights into the rutting problem. 

Advanced mechanistic modeling employs theories of mechanics that are more 

suitable to describe the real material behavior. The shortcoming is the complexity of 

these theories, and in particular the constitutive models. Asphalt concrete is a complex 

material in which recoverable and irrecoverable strains are dependent on temperature, 

stress and strain rates. Therefore, viscoelasticity and viscoplasticity theories are most 

appropriate to model the recoverable and irrecoverable behavior respectively. 

This dissertation documents the study of permanent deformation in asphalt 

concrete in pavement structures using a full mechanistic model. A constitutive model 

framework based on Schapery’s viscoelasticity theory and Perzyna’s viscoplasticity was 

presented. This model, which was developed in previous studies (Gibson, 2006; Kim, 

2009), has been enhanced in the present work. An improved calibration process was 

developed and verified, and the model was implemented in a 3D finite element 

formulation. Two immediate practical applications were shown and a simulation of a full-

scale accelerated pavement test was performed. The results and discussion provide 

important information about the rutting problem in asphalt concrete and how it develops 

and evolves over traffic loading; this contributes to the development of better modeling 

techniques for pavement performance predictions. 

7.1. Model Calibration 

The majority of the laboratory effort was devoted to the viscoplastic 

characterization. A new testing procedure was developed to expedite the calibration 
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process in the laboratory, while maintaining the range of stresses and frequencies 

recommended from previous research (Gibson, 2006). Instead of using two types of creep 

and recovery test to evaluate independently the influence of stress magnitude and load 

frequency, one unique test, termed a multi-stress/load duration creep and recovery test, 

was developed that combined different stress levels and load durations. The Perzyna-

HiSS viscoplastic model was successfully calibrated against the laboratory test results 

(see Figure 31). 

Flow Number (FN) tests were used to verify the calibrated model. These tests 

were performed independently by FHWA researchers at the Turner-Fairbank Highway 

Research Center. The calibrated model was capable of predicting the permanent strains of 

the confined FN test with reasonable accuracy (see Figure 32). Strains of the unconfined 

FN test were underpredicted because the applied deviatoric stresses were very low and 

below those used in the multi-stress/load duration calibration tests. For practical 

applications, the stress conditions in the confined FN test are more characteristic of real 

pavements and thus more relevant to rutting performance. 

One of the shortcomings of advanced characterization of asphalt concrete 

mixtures is the complex calibration process, which often requires one or more research-

grade tests. This issue poses as an obstacle to practitioners and reduces the effort to 

disseminate advanced modeling as a design tool. This research demonstrated that the 

Perzyna-HiSS viscoplastic model can be successfully calibrated using the simple FN test 

(see Figure 33). The calibration was validated using the multi-stress/load duration tests 

(see Figure 34). The FN test can be easily performed using the Asphalt Mixture 
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Performance Tester (AMPT) and it is the test of choice for calibrating the empirical 

rutting model in the MEPDG.  

7.2. Moving Wheel Analyses 

The importance of induced shear stress reversals due to moving wheel simulation 

was clearly demonstrated. The total amount of rutting observed after 500 cycles of a 

moving load was about 1.6 times higher than the rutting beneath an equivalent bouncing 

wheel. There was no plastic saturation as permanent deformation continued to 

accumulate with each pass of the moving wheel, as opposed to the significant reduction 

in the rate of permanent deformation observed in the bouncing wheel load simulation (see 

Figure 51). 

The distribution of permanent strains within the asphalt concrete layer was 

significantly different between the moving and bouncing wheel analyzes (see Figure 52). 

The results from the moving wheel analysis were in qualitative agreement with field data 

collected from trench studies at MnRoad. The plastic strain distribution is particularly 

important for rutting performance prediction and the development of empirical models, in 

which elastic strains are converted into plastic strains through depth correction functions. 

7.3. Effect of Different Pavement Structures 

Rutting patterns in three pavement types were simulated the finite element model 

– conventional flexible pavement, full depth asphalt concrete pavement, and composite 

pavement. The 3D finite element simulation was capable of identifying fundamental 
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differences in how rutting develops in different pavement structures and the differences 

in the transverse profile and distribution of rutting within the layer. 

The composite pavement produced the least rutting, about one-third of that in the 

conventional flexible pavement at 500 cycles. In addition, the characteristic primary stage 

produced significantly less rutting and ended sooner than in the flexible pavement case. 

The conventional flexible and full depth pavement structures produced similar rutting 

predictions (see Figure 54). 

Three dimensional pavement simulations using advanced models provide the 

entire transverse rutting profile. The shape of the profile reflects the response to loading 

and the distribution of stresses within the layer. The conventional flexible pavement 

produced the largest heave after 500 cycles. The full depth asphalt concrete pavement 

produced more rutting underneath the tire load but less heave at the edge of the tire as 

compared to the conventional flexible pavement. The composite structure produced the 

least permanent deformation of all pavements, both in terms of settlement and heave (see 

Figure 55). 

Different pavement types produced different permanent strain distributions 

through the asphalt concrete layer. The results agreed qualitatively with expected field 

behavior based on previous research studies of trench data (i.e., flexible pavement 

sections in MnRoad and Westrack). The results presented here for all three pavement 

structures indicate that the location of the maximum deformation depends on the type of 

pavement structure (see Figure 56). The permanent strain distribution is particularly 

important for the development of depth adjustment factors for mechanistic-empirical 

pavement design procedures like the MEPDG. 
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7.4. MEPDG Depth Factor for Rutting Predictions 

Mechanistic-empirical models, such as the MEPDG, rely on regression models to 

transform mechanistic responses into distresses. Discrepancies between elastic 

predictions of response and expected field results are resolved by using an empirical 

depth factor. This study demonstrated that the shape and magnitude of the permanent 

strain distribution varies significantly with pavement type. Therefore, pavement-specific 

depth factors are necessary. 

The difference between the MEPDG computed plastic strain distribution and the 

residual strain distribution predicted using the finite element model was demonstrated for 

each pavement type. New depth functions were developed using the same mathematical 

formulation in the current MEPDG depth function to facilitate the implementation in the 

MEPDG software. The new depth functions produced plastic strains predictions that are 

in much better agreement with mechanistically computed residual strains (see Figure 57, 

Figure 58, and Figure 59). This approach can be used in future enhancements of the 

MEPDG. 

7.5. Field Rutting Predictions 

The elasto-viscoplastic model implemented in ABAQUS was used to predict 

rutting for lane 11 of the FHWA’s ALF experiment. Five hundred cycles were simulated 

and a procedure to extrapolate the results was formulated to estimate rutting at the end of 

the experiment. Predicted and measured rutting at the center of the wheel path were in 

good agreement (see Figure 67). It was observed that densification had occurred at early 

stages of loading due to low compacted densities at the top and bottom of the asphalt 
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layer. This type of traffic compaction cannot be predicted by a viscoplastic model that 

assumes homogeneous initial conditions through the layer. Therefore the predicted 

permanent deformation was compared with measured values excluding the densification. 

The results were within two standard deviations of measured values. The consistent offset 

between the predicted and measured rutting yields a difference of 0.86 mm (or 30%) at 

the end of the experiment at 300,000 cycles. This difference is within expected variance 

in rutting measurements. 

Lane 11 was also modeled using a bouncing wheel as a replacement for the 

moving wheel. The same adjustment process and curve fitting was applied. Rutting 

predicted at the last cycle using the bouncing wheel was about 50% of the value 

measured (see Figure 68). The use of a 3D model with a moving wheel reduced the error 

in the prediction by half when compared to the bouncing wheel analysis. 

7.6. Recommendations 

The viscoelastic-viscoplastic constitutive model implemented in the ABAQUS 

finite element code is limited for practical design applications. The computational effort 

is very demanding at present. However, as the state of the art advances, so does 

computing technology. 

A significant amount of time was devoted to implementing the viscoplastic 

component of the advanced model into the UMAT in ABAQUS. The algorithm should be 

further refined to improve computational efficiency, especially the procedure to define 

the growth of the HiSS yield surface and the normal viscoplastic trajectory. The current 

approach is reliable but often slow. Enhancements to the algorithm would expedite the 
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calculations and bring advanced pavement modeling analysis closer to becoming part of 

design procedures. 

During the development of the UMAT an ill-conditioned solution of the HiSS 

function at the intercept with the volumetric stress invariant axis was found (see Figure 

40). The normal to the HiSS surface at its intersection with the volumetric axis is 

undefined. Since the Perzyna-HiSS model assumes associated flow, the direction of the 

incremental viscoplastic strain vector is always normal to the yield surface and thus is 

undefined at the intercept where the normal vector cannot be computed. The HiSS 

surface equation should be refined to avoid this singularity at the intercept with the 

volumetric axis so that the HiSS surface can be properly evaluated over the entire stress 

domain. 

One of the benefits identified in this research of using the Perzyna-HiSS 

viscoplasticity model identified in this research is that it can be calibrated using the flow 

number test, a relatively simple and cost effective procedure. However, only a limited 

study was done regarding the use of the flow number test. Expanding this finding to other 

mixtures and determining the ideal testing conditions for model calibration should be 

performed, especially with regard to calibrating the model for low stress levels. 

The moving load simulation was accomplished by applying the tire footprint as a 

pressure load and directly rolling it over the surface nodes in the finite element model. 

This approach provided numerical stability and was fast, but it was difficult to model as 

each strip of pressure load defined separately. New options for simulating the tire load 

should be investigated with the objective of improving repeatability without jeopardizing 

computational time. 
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This research demonstrated the finite element model’s potential for determining 

pavement-specific depth functions used in the MEPDG. The application was limited to 

three pavement types with one structure of each. A parametric study is recommended to 

develop a database of depth functions that are pavement structure-specific. This database 

could be developed as a library of mathematical models and implemented as an artificial 

neural network that would provide more correct adjustments for the MEDPG rutting 

model. 
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Appendix A.   Viscoelastic-Viscoplastic UMAT 

Description of subroutines 
 
Subroutine name Description 
UMAT Main subroutine called from ABAQUS 

input file. It is related to the material 
selection in the input file. 

newperpHiSS This function takes the HiSS surface 
definition parameters and the stress point to 
create a normal line from the Hydrostatic 
line to the stress point. It also finds the line 
intersection point on the HiSS surface, 
assuming the two solutions for the points 
on this line to be a quadratic relation. 
Adapted from Gibson (2006) for this 
UMAT. 

dHiss This function computes the normal vector 
dFds on the HiSS surface using the surface 
parameters and the applied stress point. 
Adapted from Gibson (2006) for this 
UMAT. 

Gethydrpntext This function computes the intersection 
between the line passing by the applied 
stress, the HiSS stress points and the 
Hydrostatic line. Adapted from Gibson 
(2006) for this UMAT. 

HNR This function applies a Newton-Raphson 
algorithm to find a point on the Hiss 
surface that is normal to the applied stress 
point (Gibson, 2006). 

Kbacktr This subroutine is used to transform the 4th 
order tensor in the local coordinate system 
(in the principal axes) back into a 4th order 
tensor in the global coordinate system 
(global) (Hinterhoelzl, 1999). 

Kprind This subroutine is used to order the 
principal stress/strain tensor if the form of  
e33p>e22p>e11p. This will comply with 
the requirement of symmetry of the 
transverse isotropy. Accordingly the array 
of the cosines is also changed to cs(3,3). 

Unitvector This function computes the unit vector of a 
given vector. 
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C U M A T 
C 
C ABAQUS USER MATERIAL MODEL FOR ViscoElasticity with Continuum Damage 
C and ViscoPlasticity 
C VECD component based on Schapery VECD theory and VP based on Perzyna-HiSS 
C  
C WRITTEN BY REGIS L. CARVALHO, with components adapted from R.  
C Hinterhoelzl (1999) and Gibson (2006) 
C 
C 2008-2011 
C  
C FILENAME: VEVP1_1.for 
c 
c INTRODUCTION      
c 
c 3-dimensional formulation with adaptation for plane strain problems 
c 
c Assumptions: small strains 
c              small rotations of the principal axes of strain  
c 
c Material Data: 
c  It is chosen to define all the material parameters like Prony series, damage 
C  functions and viscoplastic model. 
C  Internal State Variables are defined as follows: 
c       - Viscoplastic strain components: statev(l), with l = 1 to 6 
c       - HiSS surface stress: statev(k), with k = 7 to 9 
c       - HiSS normals: statev(j), with j = 10 to 12 
c       - Damage: statev(13) 
c       - viscoelastic internal variables: statev(h), h = 14 to (13+6*nE) 
C         nE, number of terms of the Prony series = 12 
c 
c  E used in the umat is  in [kPa]. So the geometry has to be defined in  
c  mm and all the loading in [kN] for forces and [mm] for displacement. 
c  The relaxation times of the Prony series are in [sec]. So all the times in 
c  the input have to be defined in [sec]. 
c  
c Temperature: 
c  The influence of the temperature on the time dependent behavior is modeled 
c  by making use of the time-temperature-superposition-principle (TTSP) for  
c  thermorheologically simple materials. 
c  The implementation is done for the definition of the shift factor aT and used 
c  to compute the reduced time increment dtau. 
c 
c 
c The umat is programmed for a nonlinear viscoelastic boundary value problem. 
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c No correspondence principle is used. Nevertheless pseudostrains are defined. 
c 
c Principal axis of the strain 3 is axis of transverse isotropy  
c 
c The programming will make use of vector and matrix formulations for stress, 
c strain and jacobian instead of tensor formulation. 
c 
c The user must provide the calculation of (Variables of Abaqus): 
c 
c      ddsdde(ntens,ntens)(Jakobian-Matrix of the constitutive model) 
c      stress(ntens)      (Cauchy stress tensor) 
c      statev(nstatv)     (array containing the solution dep. *DEPVAR) 
c 
c      and if necessary the calculation of: 
c 
c      sse     (specific elastic strain energy) 
c      spd     (plastic dissipation) 
c      scd     (creep-dissipation) 
c 
c Abaqus provides the following variables:            
c 
c      stran(ntens)  (array of the total strain components without the thermal 
c                     strains) 
c      dstran(ntens) (array of strain increments without thermal strain incr.) 
c      time(1)       (value of step time at the beginning of the current incr.)  
c      time(2)       (value of the total time at the begin. of the curr. incr.) 
c      dtime         (time increment) 
c      temp          (temperature at the start of the increment) 
c      dtemp         (increment of temperature) 
c      predef        (array of predefined field variables)    
c      dpred         (array of incr. of the predefined field variables)     
c      cmname        (name given on *MATERIAL) 
c      ndi           (number of direct stress components) 
c      nshr          (number of engineering shear stress components)      
c      ntens         ndi+nshr 
c      nstatv        (number of solution dependent state variables) 
c      props         (array of material constants) 
c      nprops(nprops)(number of material constants) 
c      coords(3)     (coordinates of this point)    
c      drot(3,3)     (rotation increment matrix) 
c      celent        (characteristic element length) 
c      dfgrdo(3,3)   (deformation gradient at the beginning of the incr.) 
c      dfgrd1(3,3)   (deformation gradient at the end of the incr.) 
c      noel          (elementnumber) 
c      npt           (integration point number) 
c      layer         (composite layer number) 
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c      kspt          (sectionpoint number within the current layer) 
c      kstep         (step number) 
c      kinc          (increment number) 
c 
C 
C 1. Declaration of variables provided by ABAQUS 
C    UMAT subroutine header 
C 
      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 
     1 RPL,DDSDDT,DRPLDE,DRPLDT, 
     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 
     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 
     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*80 CMNAME 
      DIMENSION STRESS(NTENS),STATEV(NSTATV), 
     1 DDSDDE(NTENS,NTENS), 
     2 DDSDDT(NTENS),DRPLDE(NTENS), 
     3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 
     4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 
C 
C 
C 2. Declaration of local variables 
C 
C 2.1. Definition of variables required for the viscoelastic with damage component 
c 
c Local Variables (just used in umat - user subroutine): 
c  t=tn           time at the beginning of the increment 
c  t=tn+1         time at the end of the increment 
c  E0mat          initial youngs modulus of the stress strain curve or 
c                 C11(S1=0) 
c  nue0           poissons ratio 
c  the relaxation function is defined as prony series: 
c  nE             number of terms of the prony series 
c  E0prony        value of the relaxation function for t=0 
c  Eprony(nE)     terms of the prony series 
c  rho(nE)        relaxation times of the prony series 
c  Er             reference Modulus, used to transfer the relaxation function 
c                 to a function of time 
c  alph0          initial term of the prony series of the relative relax. funct. 
c  alph(nE)       terms of the prony series of the relative relax. funct. 
c  C11 etc.       material functions depending on the damage variable S 
c  S              damage variable 
c  A11 etc.       material functions depending on C11 etc. 
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c  Tr             reference temperature 
c  C_1,C_2        parameters of the WLF equation 
c  aT_n           TTSP shift factor for the temp. at the beginning of the incr.  
c  aT_n1          TTSP shift factor for the temp. at the end of the increment  
c  h_n, h_n1      logarithm with basis e of (1/aT)  
c  dtau           reduced time increment 
c  eps(ntens)     strains at t=tn 
c  deps(ntens)    strain increment 
c  epsi(nE,ntens) viscous strains for the i-th term of the prony series 
c  epsv(ntens)    viscous strains, t=tn+1 
c  epsR(ntens)    pseudo strains, t=tn+1 
c  ps1(3)          principal values of strain provided by Abaqus 
c  an(3,3)        cosines between global axes and principal axes  
c  assumed transverse isotropy with the principal axis 3 as axis of symmetry  
c  3 is defined as the axis of the maximum principal strain 
c  cs(3,3)        cosines between global axes and principal axes for 3 as 
c                 major axis and axis of symmetry for transverse isotropy 
c  e11p,e22p,e33p principal strains  for 3 as major principal axis and axis of 
c                 symmetry for transverse isotropy, e33p>e22p>e11p 
c  evR,e2R,e3R    pseudo strains for the assumed transverse isotropy  
c  WR_S           pseudo strain energy density function 
c  dC_dS2         differentiation of C(S2) with regard to S2 
c  dWRdS1,2       differentiation of WR with regard to S1, S2 
c  dS             increment of damage variable S 
c  stresp(3)      updated local principal stresses (t=tn+1) 
c  deRdde         derivation of the global pseudo strains with regard to the 
c                 global real strains 
c  Cij(ntens,ntens) local Jacobian, depending on material functions and time 
c                   increment dtau 
c  c12#           calibration parameters of C12 damage function 
c  c22#           calibration parameters of C22 damage function 
c  
      INTEGER nE,i,j,l 
      PARAMETER(nE=12) 
      REAL*8 E0mat,nue0,E0prony,Eprony(nE),rho(nE),Er,alph0,alph(nE), 
     &       S,Sd,C11R,A11,A22,A12,A44,A66,C11,C12,C22,C,Tr,at_n, 
     &       aT_n1,dtau,eps(ntens),deps(ntens), epsi(nE,ntens), 
     &       epsv(ntens),epsR(ntens),ps1(3),an1(3,3),cs1(3,3), 
     &       e11p,e22p,e33p,evR,e2R,e3R,WR_S,WR_Sd,dWRdS,dC_dS2, 
     &       dS,stresp(3),Cij(ntens,ntens),sum,deRdde, 
     &       C_1,C_2,h_n,h_n1,c111,c112,c113,c114,c115,c116, 
     &       c221,c222,c223,c121,c122,c123,c124,c125,alphadamage, 
     &       ddt,E0calc,Etcalc,yy1,yy2,timer 
C 
C 2.2. Definition of variables required for the VP subroutine 
C 
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C gamma, alpha, n, R, alpha0, R0, kappa, m, expo, tau, NN - parameters HiSS surface 
C xi - volumetric viscoplastic strains 
C ps - vector of applied principal stresses, fixsig11, fixsig22, fixsig33 
C surfstress - stress vector of HiSS surface point 
C dFdsigma - vector of derivatives of F with respect to sigma 
C Dist = (F/F'0) - 1 
C HiSScentpoints -  vector of points on surface at convergence 
C centnorm - normal vector on the center point of convergence 
C intestJstress - Second invariant (J2d) of deviatoric stress tensor 
C intestIstress - First invariant (I1) of stress tensor 
C intestJsurf - J2d corresponding to I1 on the Hiss Surface 
C surfintercept - point where the HiSS surface intercepts the Hydrostatic line 
C perpiii - volumetric stress or pressure = (sigma1 + sigma2 + sigma3)/3 
C hydrline - point where the line normal to HiSS intercept on the Hydrostatic line 
C DistA - distance from HiSS surface point and applied stress 
C DistB - distance form Hydrostatic line and HiSS surface point 
C devpdt - viscoplastic strain rate 
C evp - viscoplastic principal strains corresponding to stress increment i 
C psOLD - previous applied principal stress 
C surfstressOLD - previous HiSS surface stress 
C dfdsigmeOLD - previous normals to HiSS surface 
C an - matrix of direction cosines for stress 
C evpt - viscoplastic strain tensor corresponding to stress increment i 
C ane - matrix of direction cosines for viscoplastic strain 
C stressNEW - new stress tensor (increment i+1) 
C stressOLD - current stress tensor (increment i) 
C destran - matrix of six components of elastic strain 
C vetor - auxiliar vector of principal values (vetor(3)) 
C cs(3,3) - new cosine matrix from the transformation of principal stresses 
C sit, slopetangent,slopenormal,anglenormal,angleline,anglecheck - auxiliary 
C  variables to define the normal-free zone 
C 
      REAL*8 ps(3),surfstress(3),dFdsigma(3), 
     & HiSScentpoints(3),centnorm(3),devpdt(3),evp(3), 
     & psOLD(3),surfstressOLD(3),dfdsigmaOLD(3),an(3,3),evpt(6), 
     & ane(3,3),stressNEW(NTENS),stressOLD(NTENS),destran(NTENS), 
     & vetor(3),cs(3,3) 
C      
      REAL*8 alpha0,gamma,R0,n,kappa,m,expo,tau,NN,k3,xi,alpha,R, 
     & Dist,intestJstress,intestIstress,intestJsurf,surfintercept, 
     & perpiii, 
     & hydrline, 
     & DistA,DistB,lambda,A,tempshift,sit,slopetangent, 
     & slopenormal,anglenormal,angleline,anglecheck 
C 
C 
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C 3. Material properties and variable initialization 
C 
C 3.1. Viscoelastic properties 
c 
c define the material functions C11(S),C12(S),C22(S) 
c  they are defined as single statement functions, which are actually part of  
c  the declaration of the variables; therefor they should come directly after 
c  the declaration of the variables. 
c  REVISE ->E0mat and nue0 do not need to be mentioned for C11 etc., they are defined 
c  later. 
c  REVISE ->For the material functions C12(S1),C22(S1) it is assumed that in the  
c  undamaged state the poissons ratio (nue0) is constant. 
c 
      C11(S) = EXP(c111*S**c112) 
      C12(S) = (c121 - c122)*EXP(-c123*S)-c124*S+c122 
      C22(S) = c221 + c222*S*S 
c 
c relaxation function E(t) - Prony series (in Kpa and sec)    
c  if you change the data of the prony series you have to adapt nE in the 
c  beginning at the variable declaration (see 1.) 
      E0prony = 338297.6 
      Eprony(1) = 3435971 
      Eprony(2) = 3435971 
      Eprony(3) = 3435971 
      Eprony(4) = 3435971 
      Eprony(5) = 3435971 
      Eprony(6) = 2286747 
      Eprony(7) = 850059.2 
      Eprony(8) = 351616.8 
      Eprony(9) = 132844.1 
      Eprony(10)= 73265.97 
      Eprony(11)= 3.015 
      Eprony(12)= 3.015 
c     
      rho(1) = 0.000001 
      rho(2) = 0.00001 
      rho(3) = 0.0001 
      rho(4) = 0.001  
      rho(5) = 0.01  
      rho(6) = 0.1  
      rho(7) = 1.0  
      rho(8) = 10.0  
      rho(9) = 100.0  
      rho(10) = 1000.0  
      rho(11) = 10000.0  
      rho(12) = 100000.0  
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c 
      nue0 = 0.428 
      Er = 1.0 
c 
c Define the calibrated functions for the damage functions 
c 
      c111 = -0.00298 
      c112 = 0.5006 
      alphadamage = 2.0 
c 
      c121 = 1.0 - 2.0*nue0 
      c122 = 0.1423 
      c123 = 1.317*10**(-5.) 
      c124 = 4.103*10**(-7.) 
c       
      c221 = -0.4113 
      c222 = -1.6937*10**(-10.) 
c 
c Temperature Shift Factor 
c 
      tempshift=0.000466 
c       
c     tempshift=0.002615 for 39°C - lab test at UMD 
c     tempshift=0.000466 for 45°C 
c     tempshift=0.00000193 for 64°C       
c 
C 3.2. Viscoplastic properties 
c 
      alpha0=0.0068 
      gamma=0.0428 
      R0=38.4245 
      n=2.2564 
      kappa=-68.096 
      m=3227.4 
      expo=0.3306 
      tau=-8.7801 
      NN=1.076 
      k3=2.5782 
c 
C 3.3. Initialization of STATEV in case it is first increment 
C 
C     The first 12 internal state variables are used in the VP model, as described 
C     below. variable 13 stores the damage variable, S, of the VECD model and the 
C     remaining 6*nE variables are auxiliaries in the pseudo strain calculations. 
C 
C     If the first step and increment, assume xi=0,otherwise 
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C     xi=statev(1)+statev(2)+statev(3) 
c      print *, kstep, kinc 
      IF (kstep==1 .AND. kinc==1) THEN 
C       first six are VP strains, 11,22,33,12,13,23       
        STATEV(1)=0. 
        STATEV(2)=0. 
        STATEV(3)=0. 
        STATEV(4)=0. 
        STATEV(5)=0. 
        STATEV(6)=0. 
C       next three are HiSS surface stress in principal domain 
        STATEV(7)=0. 
        STATEV(8)=0. 
        STATEV(9)=0. 
C       last three are HiSS normals (dF/dsigma) in principal domain 
        STATEV(10)=0. 
        STATEV(11)=0. 
        STATEV(12)=0. 
      END IF 
c 
c     Read S from the statev(13) provided by Abaqus 
c     if you want to start the calculations with from zero different initial value 
c     for S, you have to change the value for Safter the two "if" commands 
c 
      S = statev(13) 
      IF (kstep==1) THEN 
       IF (kinc==1) THEN 
        S=0.d0 
       END IF 
      END IF 
c     If you want to run calculations without damage, means just linear visco- 
c     elastic calculations, you have to remove the "c" in front of the next  
c     line to set them effective and set S=0.d0 for every iteration. 
      S=0.d0 
c 
C 3.4. Initilization of vectors and matrices 
C 
      DO I=1,3 
        vetor(I)=0. 
        psOLD(I)=0. 
        ps(I)=0. 
        DO J=1,3 
            an(I,J)=0. 
            cs(I,J)=0. 
            ane(I,J)=0. 
        END DO 
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      END DO      
c 
C 
C 4. Viscoelastic with Continuum Damage Calculations 
C 
c 4.1. Calculate alph(i) 
      alph0=E0prony/Er 
      do i=1,nE 
       alph(i)=Eprony(i)/Er 
      end do 
c 
c 4.2.Define the material functions A11, A22, A12, A44, A66 for the instant t=tn 
c 
      C11R = C11(S) 
      A11 = (1.d0/9.d0)*(C11R-((C12(S)-3.d0)**2.d0)/C22(S)) 
      A22 = C11R-(C12(S)**2.d0)/C22(S) 
      A12 = (1.d0/3.d0)*C11R+(C12(S)/C22(S))* 
     &       (1.d0-(1.d0/3.d0)*C12(S)) 
      A44 = C11(0.d0)/(2.0d0*(1.d0+nue0)) 
      A66 = A44  
c 
c 4.3 Reduced time 
c 
      timer=time(1)+dtime 
      dtau=dtime !/tempshift 
c 
c 4.4 Read eps, deps and transform eps(i)+deps(i) in epsR_n1  
c 
c     Read strain eps(i) and deps(i) from stran(i) and dstran(i) for t=tn 
      DO i=1,ntens 
       eps(i)=stran(i) 
       deps(i)=dstran(i) 
      END DO 
c       
c     This is a new recursive approach based on Simo and Hughes (1998) 
c     Here epsi (i,j) is equivalent to h(i) for a strain j (i = 1 to 12 and 
c     j = 1 to NTENS) 
c 
c     l = 13, since the first aux statev is 14. 
c 
      l=13 
      DO j=1,ntens 
       epsv(j)=0.d0 
       DO i=1,nE 
        l=l+1 
        epsi(i,j)=0.d0 
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        epsi(i,j)= (EXP(-dtau/rho(i)))*statev(l)+ 
     &             deps(j)*((1.d0-EXP(-dtau/rho(i)))/(dtau/rho(i))) 
        statev(l)= epsi(i,j) 
        epsv(j)=   epsv(j)+alph(i)*epsi(i,j) 
       END DO 
       epsR(j)= alph0*(eps(j)+deps(j)) + epsv(j) 
      END DO 
c epsv, epsR are at time t=tn+1, eps is at t=tn 
c      
c 4.5. Find the principal values and axes of epsR(ntens) 
c 
c     Find the principal values ps(3) and the principal axes an(3,3) 
c     the subroutine sprind is provided by Abaqus 
      CALL sprind(epsR,ps1,an1,2,ndi,nshr) 
c 
c     3 is the axis of symmetry of the transverse isotropic material 
c     therefor ps(3) are transformed in e33p>e22p>e11p and according to this the 
c     cosines of the axes an(3,3) to a new matrix cs(3,3) 
      CALL kprind(ps1,an1,cs1,e11p,e22p,e33p) 
c 
c     define strains for the assumed transversly isotropic material with the 
c     principal axis 3 as the axis of symmetry of the transv. isotropic material 
      evR= e11p+e22p+e33p 
      e2R= e22p-e11p 
      e3R= e33p-(evR/3.d0) 
c 
c 4.6. Calculate updated local principal stresses stresp(3) and 
c      transform them to global stresses, stress(ntens) 
c 
c     Calculate local principal stresses for t=tn+1  
c     3 is the axis of the maximum principal strain and axis of symmetry of the  
c     transverse isotropy 
      stresp(1)= (A11-(1.d0/3.d0)*A12)*evR+(A12-(1.d0/3.d0)*A22) 
     &           *e3R-A66*e2R 
      stresp(2)= (A11-(1.d0/3.d0)*A12)*evR+(A12-(1.d0/3.d0)*A22) 
     &           *e3R+A66*e2R 
      stresp(3)= (A11+(2.d0/3.d0)*A12)*evR+(A12+(2.d0/3.d0)*A22) 
     &           *e3R 
c 
c     Transform the local principal stresses stresp(3) to global stresses at t=tn+1 
c     normal stresses 
      stress(1)=stresp(1)*CS1(1,1)**2.d0+stresp(2)*CS1(2,1)**2.d0  
     &           +stresp(3)*CS1(3,1)**2.d0 
      stress(2)=stresp(1)*CS1(1,2)**2.d0+stresp(2)*CS1(2,2)**2.d0 
     &           +stresp(3)*CS1(3,2)**2.d0 
      stress(3)=stresp(1)*CS1(1,3)**2.d0+stresp(2)*CS1(2,3)**2.d0 
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     &           +stresp(3)*CS1(3,3)**2.d0 
c     Shear stresses 
      IF (NTENS==4) THEN 
      stress(4)=stresp(1)*CS1(1,1)*CS1(1,2)+stresp(2)*CS1(2,1)*CS1(2,2)+ 
     &           stresp(3)*CS1(3,1)*CS1(3,2) 
      ELSEIF (NTENS==6) THEN 
      stress(4)=stresp(1)*CS1(1,1)*CS1(1,2)+stresp(2)*CS1(2,1)*CS1(2,2)+ 
     &           stresp(3)*CS1(3,1)*CS1(3,2) 
      stress(5)=stresp(1)*CS1(1,1)*CS1(1,3)+stresp(2)*CS1(2,1)*CS1(2,3)+ 
     &           stresp(3)*CS1(3,1)*CS1(3,3) 
      stress(6)=stresp(1)*CS1(1,2)*CS1(1,3)+stresp(2)*CS1(2,2)*CS1(2,3)+ 
     &           stresp(3)*CS1(3,2)*CS1(3,3) 
      END IF 
c 
c 4.6. Calculate local Jacobian Cij and transform it to global Jacobian 
ddsdde(ntens,ntens)  
c 
c     The Jacobian is the derivation of the stress with regard to the strain  
c     or the strain increment deps at t=tn+1. 
c     S1 and S2 are assumed to be fixed (indep. of strain) since otherwise the  
c     derivation gets too complicated. So not a to the update of the stresses 
c     consistent tangent modulus for the global newton iteration is supplied but 
c     the secant modulus. This will cause a slower than quadratic convergence. 
c 
c     dstress/ddeps= dstress/depsR * depsR/ddeps 
c  
c  1) calculate the derivation of the updated pseudo strains epsR with regard to 
c     the increment in the real strains deps: 
c                                     deRdde=depsR/ddeps      ...globally 
c 
c     This derivation is accomplised by making use of the recursive algorithm 
c     (see 4.) derived to solve the hereditary integral increment by increment. 
c     It was assumed that the strains vary linearly within the time increment  
c     dtau. The result is a function of just the time increment dtau. It is  
c     independent of the coordinate system, valid for the local and the global 
c     coordinate system. 
c 
      sum=0. 
      DO i=1,nE 
       sum= sum + alph(i)*(rho(i)/dtau)*(1.d0-EXP(-dtau/rho(i))) 
      END DO 
c 
      deRdde=  alph0 + sum 
c      
c  2) derivate the local principal stresses with regard to the local principal 
c     pseudo strains: 
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c                                            dstressp/deiip  ...locally 
c 
c     This is multiplied by deRdde=depsR/deps. Since depsR/deps does not depend 
c     on the coordinate system, this multiplication is already performed in the 
c     local coordinate system. 
c 
      DO i=1,NTENS 
        DO j=1,NTENS 
          Cij(i,j)=0.d0 
        END DO 
      END DO 
c 
      IF (NTENS==4) THEN 
        Cij(1,1)= (A11+(1.d0/9.d0)*A22-(2.d0/3.d0)*A12+A66)*deRdde  
        Cij(2,2)= (A11+(1.d0/9.d0)*A22-(2.d0/3.d0)*A12+A66)*deRdde  
        Cij(3,3)= (A11+(4.d0/9.d0)*A22+(4.d0/3.d0)*A12)*deRdde 
        Cij(1,2)= (A11+(1.d0/9.d0)*A22-(2.d0/3.d0)*A12-A66)*deRdde 
        Cij(1,3)= (A11-(2.d0/9.d0)*A22+(1.d0/3.d0)*A12)*deRdde 
        Cij(2,3)= (A11-(2.d0/9.d0)*A22+(1.d0/3.d0)*A12)*deRdde 
        Cij(3,1)= Cij(1,3) 
        Cij(3,2)= Cij(2,3) 
        Cij(2,1)= Cij(1,2) 
        Cij(4,4)= A44*deRdde 
      ELSEIF (NTENS==6) THEN 
        Cij(1,1)= (A11+(1.d0/9.d0)*A22-(2.d0/3.d0)*A12+A66)*deRdde  
        Cij(2,2)= (A11+(1.d0/9.d0)*A22-(2.d0/3.d0)*A12+A66)*deRdde  
        Cij(3,3)= (A11+(4.d0/9.d0)*A22+(4.d0/3.d0)*A12)*deRdde 
        Cij(1,2)= (A11+(1.d0/9.d0)*A22-(2.d0/3.d0)*A12-A66)*deRdde 
        Cij(1,3)= (A11-(2.d0/9.d0)*A22+(1.d0/3.d0)*A12)*deRdde 
        Cij(2,3)= (A11-(2.d0/9.d0)*A22+(1.d0/3.d0)*A12)*deRdde 
        Cij(3,1)= Cij(1,3) 
        Cij(3,2)= Cij(2,3) 
        Cij(2,1)= Cij(1,2) 
        Cij(4,4)= A44*deRdde 
        Cij(5,5)= A44*deRdde 
        Cij(6,6)= A66*deRdde 
      END IF 
c 
c  3) transform the local Cij to the global ddsdde 
c  
      call kbacktr(Cij,ddsdde,cs1,NTENS) 
c 
      DO i=1,ntens 
        DO j=1,ntens 
            ddsdde(i,j)=Cij(i,j) 
        END DO 
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      END DO 
c 
c 4.8. Update S 
c 
c 1) calculate the numerical differentiation of WR with regard to S 
c     approximations: take S at instant t=tn and evR,e2R,e3R at t=tn+1  
c                     update S at the end of the increment (so the  
c                     calculations in the increment were performed with S 
c                     at t=tn); 
c     These approximations can be made as long as small time incr. are used. 
c  
      Sd=S+0.1d0 
c 
      C11Rd=C11(Sd) 
c 
      A11d=(1.d0/9.d0)*(C11Rd-((C12(Sd)-3.d0)**2.d0)/C22(Sd)) 
      A22d=C11Rd-(C12(Sd)**2.d0)/C22(Sd) 
      A12d=(1.d0/3.d0)*C11Rd+(C12(Sd)/C22(Sd))* 
     &       (1.d0-(1.d0/3.d0)*C12(Sd)) 
      A66d=A66 
c   
      WR_S= 0.5d0*(A11*(evR**2.d0) + A22*(e3R**2.) + 
     &               2.d0*A12*e3R*evR + A66*(e2R**2.d0))      
      WR_Sd=0.5d0*(A11d*(evR**2.d0) + A22d*(e3R**2.d0) + 
     &               2.d0*A12d*e3R*evR + A66d*(e2R**2.d0))      
c 
      dWRdS= (WR_Sd - WR_S)/0.1d0 
c 
c 2) Calcualte the increment dS1 and dS2 
      dS = ((-dWRdS)**alphadamage)*dtau 
c 
c 3) Update S from t=tn to t=tn+1 and update the regarding statev(13) 
      S = S + dS 
      statev(13) = S 
c 
C 
c 5. ViscoPlastic Calculations 
c 
C 5.1. Compute principal stresses   
C 
C     Store current stress (before VP calculations) as stressOLD=STRESS 
C 
      DO I=1,NTENS 
        stressOLD(I)=STRESS(I) 
      END DO 
C 
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C     Transform the old stress tensor into principal stresses vetor(3) 
C 
      CALL SPRIND(stressOLD,vetor,an,1,NDI,NSHR) 
C 
C     Put the principal old stresses in order 33>22>11. This is done so when 
C     the sign is changed, (-) compression becomes (+) and 11>22>33. 
C 
      CALL princord(vetor,psOLD) 
C 
C     psOLD comes in normal ABAQUS notation compression (-). The following 3 
C     lines changes the sign of the principal values, making compression (+) 
C     and shifting the order to 11>>22>>33 as required by VP model. 
C 
C 5.5. Store old stress, surfstress and dFdsigma 
C 
C     The stress comes from ABAQUS STRESS variable; surfstress from STATEV(7 to 
9) 
C     and dFdsigma from STATEV(10 to 12). 
C 
      psOLD(1)=-psOLD(1) 
      psOLD(2)=-psOLD(2) 
      psOLD(3)=-psOLD(3) 
      surfstressOLD(1)=STATEV(7) 
      surfstressOLD(2)=STATEV(8) 
      surfstressOLD(3)=STATEV(9) 
      dfdsigmaOLD(1)=STATEV(10) 
      dfdsigmaOLD(2)=STATEV(11) 
      dfdsigmaOLD(3)=STATEV(12) 
C 
C 5.6. Compute new stress for current strain increment 
C       
      DO I=1,NTENS 
        stressNEW(I)=STRESS(I) 
        DO J=1,NTENS 
          stressNEW(I)= stressNEW(I)+DDSDDE(I,J)*DSTRAN(J) 
        END DO 
      END DO 
C 
C     Transform the new stress tensor into principal stresses vetor 
C 
      CALL SPRIND(stressNEW,vetor,an,1,NDI,NSHR) 
C       
C     Put the principal new stresses in order 33>22>11. This is done so when 
C     the sign is changed, (-) compression becomes (+) and 11>22>33. The 
C     subroutine also change the cossine matrix to accomodate the new order. 
C     The new matrix will be called cs(3,3). 
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C 
      CALL kprind(vetor,an,cs,ps) 
C 
C 5.7. Compute viscoplastic strains 
C 
      DO I=1,6 
        evpt(I)=STATEV(I) 
      END DO 
      CALL SPRIND(evpt,evp,ane,2,NDI,NSHR) 
      xi=SQRT((evp(1)**2.)+(evp(2)**2.)+(evp(3)**2.)) 
C 
C     The VP model was formulated with compression (+), different from ABAQUS 
C     conventional compression (-). The following three lines change signs of 
C     principal stresses without changing directions. After the calculations 
C     are done, the viscoplastic strain signs are changed back to conventional 
C     notation of compression (-).  
      ps(1)=-ps(1) 
      ps(2)=-ps(2) 
      ps(3)=-ps(3) 
c  
C     Compute initial parameters alpha(xi) and R(xi) 
      alpha=alpha0*EXP(xi*kappa) 
      R=R0+m*(xi**expo) 
C 
C     Verify if the point perpedicular to the the stress point is either to the 
C     left or to the right of the intersection of the HiSS surface and the 
C     Hydrostatic line. 
      intestIstress=ps(1)+ps(2)+ps(3) 
      surfintercept=(1./3.)*(((alpha/gamma)**(1./(2.-n)))-R) 
      perpiii=intestIstress/3. 
C 
      IF (ps(1)==ps(2) .AND. ps(2)==ps(3)) THEN !Point on Hydrostatic 
        IF (ps(1)==0.) THEN 
            DO i=1,3 
                surfstress(i)=0. 
                dFdsigma(i)=0. 
            END DO 
            Dist = 0. 
            A = 1. 
        ELSEIF (ps(1)<=surfintercept) THEN 
            DO i=1,3 
                surfstress(i)=0. 
                dFdsigma(i)=0. 
            END DO 
            Dist = 0. 
            A = 1. 
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        ELSE 
            DO i=1,3 
                surfstress(i)=surfintercept 
                dFdsigma(i)=0. !Initialize dFdsigma for subroutine below 
            END DO 
            intestJstress = (1./3.)*(ps(1)**2+ps(2)**2+ps(3)**2- 
     &                  ps(1)*ps(2)-ps(2)*ps(3)-ps(1)*ps(3)) 
            CALL dHiSS(gamma, alpha, n, R, surfstress,dFdsigma) 
            IF (intestJstress<=0.) THEN 
                A = 0. 
                Dist = 0. 
            ELSE 
              A=(ABS(ATAN(SQRT(intestJstress)/intestIstress)/0.528))**k3 
                Dist = ((SQRT(3.*(ps(1)-surfintercept)**2) 
     &                 +surfintercept*SQRT(3.))/ 
     &                 (surfintercept*SQRT(3.)))-1. 
            END IF 
C 
        END IF 
C         
      ELSE !Point not on Hydrostatic 
C       Verify if point is outside the HiSS surface 
        intestJstress = (1./3.)*(ps(1)**2+ps(2)**2+ps(3)**2- 
     &                  ps(1)*ps(2)-ps(2)*ps(3)-ps(1)*ps(3)) 
        IF (intestIstress<-R) THEN !Prevent tension-dominant areas 
            intestJsurf = -9999 
        ELSE 
            intestJsurf = gamma*((intestIstress+R)**2) 
     &                    -alpha*((intestIstress+R)**n) 
        END IF 
        IF (intestIstress<=3.*surfintercept .AND.  
     &      intestJstress<=intestJsurf) THEN 
            DO i=1,3 
                surfstress(i)=0. 
                dFdsigma(i)=0. 
            END DO 
            Dist = 0. 
            A = 1.0 
C 
        ELSE !Outside surface -> VP Flow 
C        
            !Verify is the point is located in normal free zone 
            !Compute tangent to the intercept point in the J2D^(1/2)xI1 space 
            !at the tension side 
c             
            !surface intercept at tension side 
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            sit=-R+1.*10.**(-10.) 
            !slope of the tangent to the surface intercept in tension 
            slopetangent=(gamma*(2.*R+2.*sit)-alpha*n*(R+sit)**(n-1.))/ 
     &               (2.*(gamma*(R+sit)**2-alpha*(R+sit)**n)**(1./2.)) 
            !slope of the normal to the surface intercept in tension 
            slopenormal=TAN(ATAN(slopetangent)+3.1415927/2.) 
            !angle of the normal 
            IF (ATAN(slopenormal)>0) THEN 
                anglenormal=ATAN(slopenormal) 
            ELSE 
                anglenormal=3.1415927-ABS(ATAN(slopenormal)) 
            END IF 
            !angle line between surface intercept in tension and stress point 
            angleline=ATAN((intestJstress**(1./2.))/(intestIstress+R)) 
c             
            IF (angleline>0) THEN 
                anglecheck=angleline 
            ELSE 
                anglecheck=3.1415927-ABS(angleline) 
            END IF 
c             
            IF (anglecheck>=anglenormal) THEN 
                !inside normal free zone - Supress VP Flow 
                A=0. 
                Dist=0. 
            ELSE 
                !Outside normal free zone -> VP Flow 
C 
C               Search for the stress point on HiSS surface normal to the 
C               the surface and on the direction of the applied stress point. 
C 
            IF (STATEV(7)+STATEV(8)+STATEV(9)==0.) THEN 
C 
                lambda=1. 
                surfstressOLD(1)=perpiii 
                surfstressOLD(2)=perpiii 
                surfstressOLD(3)=perpiii 
C                 
             IF (surfstressOLD(1)+surfstressOLD(2)+surfstressOLD(3) 
     &           +R>0.) THEN 
                CALL HNR(ps,surfstressOLD,lambda,gamma,alpha,n,R, 
     &                   HiSScentpoints,centnorm) 
             ELSE 
                HiSScentpoints(1)=0. 
                HiSScentpoints(2)=0. 
                HiSScentpoints(3)=0. 



www.manaraa.com

 

 184 

 

                centnorm(1)=0. 
                centnorm(2)=0. 
                centnorm(3)=0. 
             END IF 
C                 
            ELSE 
                lambda=(((psOLD(1)-surfstressOLD(1))**2+ 
     &                   (psOLD(2)-surfstressOLD(2))**2+ 
     &                   (psOLD(3)-surfstressOLD(3))**2)**0.5)/ 
     &                  ((dfdsigmaOLD(1)**2+dfdsigmaOLD(2)**2+ 
     &                   dfdsigmaOLD(3)**2)**0.5) 
C 
             IF (surfstressOLD(1)+surfstressOLD(2)+surfstressOLD(3) 
     &           +R>0.) THEN 
                CALL HNR(ps,surfstressOLD,lambda,gamma,alpha,n,R, 
     &                   HiSScentpoints,centnorm) 
             ELSE 
                HiSScentpoints(1)=0. 
                HiSScentpoints(2)=0. 
                HiSScentpoints(3)=0. 
                centnorm(1)=0. 
                centnorm(2)=0. 
                centnorm(3)=0. 
             END IF 
            END IF 
C 
C           Patch to avoid complex number. My original formulation HiSScentpoints(1)==-
R/3. 
C           Below is a new try 
            IF (HiSScentpoints(1)==HiSScentpoints(2) .AND. 
     &          HiSScentpoints(2)==HiSScentpoints(3) .AND. 
     &          HiSScentpoints(1)==0.) THEN 
                A=0. 
                Dist=0. 
            ELSE   
                CALL gethydrpntext(ps, HiSScentpoints,hydrline) 
                DistA=SQRT((HiSScentpoints(1)-ps(1))**2.+ 
     &                     (HiSScentpoints(2)-ps(2))**2.+ 
     &                     (HiSScentpoints(3)-ps(3))**2.) 
                DistB=SQRT((HiSScentpoints(1)-hydrline)**2.+ 
     &                     (HiSScentpoints(2)-hydrline)**2.+ 
     &                     (HiSScentpoints(3)-hydrline)**2.) 
C 
                IF (DistB>surfintercept*SQRT(3.)) THEN 
                    DistB=surfintercept*SQRT(3.) 
                END IF 
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                Dist=ABS(((DistA+DistB)/DistB)-1.) 
                IF (intestJstress<=0.) THEN 
                    A = 0. 
                ELSE 
                    A=(ABS(ATAN(SQRT(intestJstress)/intestIstress) 
     &                /0.528))**k3 
                END IF 
            END IF 
C 
C           Outputs 
C 
            DO k=1,3 
                surfstress(k)=HiSScentpoints(k) 
                dFdsigma(k)=centnorm(k) 
            END DO 
        END IF 
        END IF 
      END IF 
C 
C     The result from surfHiSS function are: stress vector at the HiSS surface, 
C     surfstress(k), the normal vector to the surface on the direction of the  
C     applied stress (strain trajectory), dFdsigma(k), and the relative distance 
C     from the applied stress to the hydrostatic plane, Dist. With these parameters 
C     is possible now to compute the principal viscoplastic strain rates, devpdt(k), 
C     and incremental viscoplastic strains, evp(k). 
C 
      DO k=1,3 
        devpdt(k)=(10.**tau)*A*(Dist**NN)*dFdsigma(k) 
        evp(k)=-devpdt(k)*(dtime)*(1./tempshift) 
C     The negative sign is to transform back into compression (-) 
      END DO 
C            
C     After the incremental viscoplastic strains are computed in principal plane, it is 
C     necessary to bring back the original orientation. In this verification test it is assumed 
C     the vertical and horizontal strains corresponds respectively to major and minor and 
mid 
C     strains. 
C 
C     normal vp strains 
      evpt(1)=evp(1)*cs(1,1)**2.+evp(2)*cs(2,1)**2.+ 
     &          evp(3)*cs(3,1)**2. 
      evpt(2)=evp(1)*cs(1,2)**2.+evp(2)*cs(2,2)**2.+ 
     &          evp(3)*cs(3,2)**2. 
      evpt(3)=evp(1)*cs(1,3)**2.+evp(2)*cs(2,3)**2.+ 
     &          evp(3)*cs(3,3)**2. 
C 
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C     shear vp strains 
      evpt(4)=evp(1)*cs(1,1)*cs(1,2)+evp(2)*cs(2,1)*cs(2,2)+ 
     &          evp(3)*cs(3,1)*cs(3,2) 
      evpt(5)=evp(1)*cs(1,1)*cs(1,3)+evp(2)*cs(2,1)*cs(2,3)+ 
     &          evp(3)*cs(3,1)*cs(3,3) 
      evpt(6)=evp(1)*cs(1,2)*cs(1,3)+evp(2)*cs(2,2)*cs(2,3)+ 
     &          evp(3)*cs(3,2)*cs(3,3) 
C 
C 5.8. Update state variables (1-6)vpstrains, (7-9)HiSS surface stress, and 
C    (10-12) dFdsigma 
C                  
      STATEV(1)=STATEV(1)+evpt(1) 
      STATEV(2)=STATEV(2)+evpt(2) 
      STATEV(3)=STATEV(3)+evpt(3) 
      STATEV(4)=STATEV(4)+evpt(4) 
      STATEV(5)=STATEV(5)+evpt(5) 
      STATEV(6)=STATEV(6)+evpt(6) 
      STATEV(7)=surfstress(1) 
      STATEV(8)=surfstress(2) 
      STATEV(9)=surfstress(3) 
      STATEV(10)=dFdsigma(1) 
      STATEV(11)=dFdsigma(2) 
      STATEV(12)=dFdsigma(3) 
C 
C 5.9. Update Stress 
C 
C     For infinitesimal analysis (specimen in the lab), stresses are updated 
C     without corrections to the elastic strain. The following lines apply 
C 
C      DO k=1,ntens 
C        STRESS(k)=stressNEW(k) 
C      END DO 
C 
C     Otherwise the following lines must be active. Remove C's from the lines 
C     below and put C's on the lines above to activate the viscoplastic 
C     adjustments of the elastic strains       
C 
C     Compute the recoverable strain increments 
C 
      DO k=1,ntens 
            destran(k)=DSTRAN(k)-evpt(k) 
      END DO 
C 
C     Compute adjusted stress 
      DO I=1,ntens 
        DO J=1,ntens 
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          STRESS(I)= STRESS(I)+DDSDDE(I,J)*destran(J) 
        END DO 
      END DO 
C 
C 
C 6.0 Return back to ABAQUS 
C 
      RETURN 
      END 
c 
c 
c 
c 7. Subroutines           
c 
c===============================================================
===== 
      SUBROUTINE kbacktr(C,T,DIR,N) 
c===============================================================
===== 
c Developed by R. Hinterhoelzl (1999)  
c 
c Transform the 4th order tensor in the local coordinate system (in the 
c principal axes) back into a 4th order tensor in the global coordinate  
c system (global). 
c 
c     C(N,N): Jacobian in the local coordinate system of the principal axes 
c     T(N,N): Jacobian in the global (original) coordinate system 
c     DIR(I,J): DIRECTION COSINE BETWEEN Xi'(PRIN.) TO Xj (GLOBAL). 
c     N: Number of stresses (4 - axisymmetric and plane strain problems 
c                            6 - full 3D problems) 
c                           OBSERVATION: Not coded for plane stress problems 
c 
c     stress(1)=stress(1,1)     strain(1)=strain(1,1) 
c     stress(2)=stress(2,2)     strain(2)=strain(2,2) 
c     stress(3)=stress(3,3)     strain(3)=strain(3,3) 
c     stress(4)=stress(1,2)     strain(4)=strain(1,2) 
c     stress(5)=stress(1,3)     strain(5)=strain(1,3) 
c     stress(6)=stress(2,3)     strain(6)=strain(2,3) 
c 
c 
      INCLUDE 'aba_param.inc' 
      REAL*8 DIR(3,3) 
      REAL*8 T(N,N),C(N,N),C0(3,3,3,3) 
c 
c 1) find the 4th order tensor C0(3,3,3,3)  in the local coordinate system 
c    from the 6x6 matrix C(NTENS,NTENS) 
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c 
      DO I=1,3 
        DO J=1,3 
            DO K=1,3 
                DO L=1,3 
                    C0(I,J,K,L)=0.d0 
                END DO 
            END DO 
        END DO 
      END DO 
c 
      IF (N==4) THEN 
         
        C0(1,1,1,1)=C(1,1) 
        C0(1,1,2,2)=C(1,2) 
        C0(1,1,3,3)=C(1,3) 
        C0(2,2,1,1)=C(2,1) 
        C0(2,2,2,2)=C(2,2) 
        C0(2,2,3,3)=C(2,3) 
        C0(3,3,1,1)=C(3,1) 
        C0(3,3,2,2)=C(3,2) 
        C0(3,3,3,3)=C(3,3) 
C         
        C0(1,2,1,2)=C(4,4) 
        C0(1,2,2,1)=C(4,4) 
        C0(2,1,1,2)=C(4,4) 
        C0(2,1,2,1)=C(4,4) 
      ELSEIF (N==6) THEN 
        C0(1,1,1,1)=C(1,1) 
        C0(1,1,2,2)=C(1,2) 
        C0(1,1,3,3)=C(1,3) 
        C0(2,2,1,1)=C(2,1) 
        C0(2,2,2,2)=C(2,2) 
        C0(2,2,3,3)=C(2,3) 
        C0(3,3,1,1)=C(3,1) 
        C0(3,3,2,2)=C(3,2) 
        C0(3,3,3,3)=C(3,3) 
        C0(1,2,1,2)=C(4,4) 
        C0(1,3,1,3)=C(5,5) 
        C0(2,3,2,3)=C(6,6) 
c       
        C0(1,2,2,1)=C(4,4) 
        C0(1,3,3,1)=C(5,5) 
        C0(2,3,3,2)=C(6,6) 
        C0(2,1,1,2)=C(4,4) 
        C0(3,1,1,3)=C(5,5) 
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        C0(3,2,2,3)=C(6,6) 
        C0(2,1,2,1)=C(4,4) 
        C0(3,1,3,1)=C(5,5) 
        C0(3,2,3,2)=C(6,6) 
      END IF 
c 
c 2) find the NTENSxNTENS matrix T(N,N) in the global coordinate system from the 
c    4th order tensor in the local coordinate system C0(3,3,3,3) 
      DO I=1,N 
        DO J=1,N 
            T(I,J)=0.d0 
        END DO 
      END DO 
c 
      DO M=1,3 
        T(M,M)=0.d0 
        DO I=1,3 
          DO J=1,3 
            DO K=1,3 
              DO L=1,3 
                T(M,M)=T(M,M)+DIR(I,M)*DIR(J,M)*DIR(K,M)*DIR(L,M)* 
     &                 C0(I,J,K,L) 
              END DO 
            END DO 
          END DO 
        END DO 
      END DO 
c 
      DO I=1,3 
        DO J=1,3 
          DO K=1,3 
            DO L=1,3 
              IF (N==4) THEN 
                T(4,4)=T(4,4)+DIR(I,1)*DIR(J,2)*DIR(K,1)*DIR(L,2)* 
     &                 C0(I,J,K,L) 
                T(1,2)=T(1,2)+DIR(I,1)*DIR(J,1)*DIR(K,2)*DIR(L,2)* 
     &                 C0(I,J,K,L) 
                T(1,3)=T(1,3)+DIR(I,1)*DIR(J,1)*DIR(K,3)*DIR(L,3)* 
     &                 C0(I,J,K,L) 
                T(2,3)=T(2,3)+DIR(I,2)*DIR(J,2)*DIR(K,3)*DIR(L,3)* 
     &                 C0(I,J,K,L) 
              ELSE IF (N==6) THEN 
                T(4,4)=T(4,4)+DIR(I,1)*DIR(J,2)*DIR(K,1)*DIR(L,2)* 
     &                 C0(I,J,K,L) 
                T(5,5)=T(5,5)+DIR(I,1)*DIR(J,3)*DIR(K,1)*DIR(L,3)* 
     &               C0(I,J,K,L) 
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                T(6,6)=T(6,6)+DIR(I,2)*DIR(J,3)*DIR(K,2)*DIR(L,3)* 
     &                 C0(I,J,K,L) 
                T(1,2)=T(1,2)+DIR(I,1)*DIR(J,1)*DIR(K,2)*DIR(L,2)* 
     &                 C0(I,J,K,L) 
                T(1,3)=T(1,3)+DIR(I,1)*DIR(J,1)*DIR(K,3)*DIR(L,3)* 
     &                 C0(I,J,K,L) 
                T(2,3)=T(2,3)+DIR(I,2)*DIR(J,2)*DIR(K,3)*DIR(L,3)* 
     &                 C0(I,J,K,L) 
              END IF 
            END DO 
          END DO 
        END DO 
      END DO       
c 
      T(2,1)=T(1,2) 
      T(3,1)=T(1,3) 
      T(3,2)=T(2,3) 
c 
      RETURN 
      END 
c 
c 
c 
      SUBROUTINE kprind(ps,an,cs,e11p,e22p,e33p) 
c       
c Developed by R. Hinterhoelzl (1999)  
c 
      INCLUDE 'aba_param.inc' 
      REAL*8 an(3,3),cs(3,3),ps(3)       
c      
c the principal values ps(3) are not ordered; 
c now they are ordered to e33p>e22p>e11p since 3 will become the axis of 
c symmetry of the transverse isotropy; accordingly the array of the cosines is 
c changed to cs(3,3); 
c 
c 1) Change the direction of the normal vector if det(an)=-1 to get a 
c     coordinate system that satisfies the right hand rule 
c 
      det=(an(1,1)*an(2,2)*an(3,3)+an(1,2)*an(2,3)*an(3,1)+ 
     &     an(1,3)*an(2,1)*an(3,2)-an(1,3)*an(2,2)*an(3,1)- 
     &     an(1,2)*an(2,1)*an(3,3)-an(1,1)*an(2,3)*an(3,2)) 
c 
      IF(det<(-0.999d0)) THEN 
         an(1,1)=-an(1,1) 
         an(1,2)=-an(1,2) 
         an(1,3)=-an(1,3) 
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         an(2,1)=-an(2,1) 
         an(2,2)=-an(2,2) 
         an(2,3)=-an(2,3) 
         an(3,1)=-an(3,1) 
         an(3,2)=-an(3,2) 
         an(3,3)=-an(3,3) 
      END IF 
c 
c 2) find 3 as the major axis 
         imax=1 
         smax=ps(1) 
         DO i=2,3 
            IF(ps(i)>=smax) THEN         
               imax=i 
               smax=ps(i) 
            END IF           
         END DO 
c 
           e33p=ps(imax)     
c  
         cs(3,1)=an(imax,1) 
         cs(3,2)=an(imax,2) 
         cs(3,3)=an(imax,3) 
c 
c 3) find the next two axes 
         IF(imax==1) THEN                
            i2=2 
            i3=3 
          ELSE IF(imax==2) THEN 
             i2=1 
             i3=3 
          ELSE 
             i2=1 
             i3=2 
          END IF                          
c 
          med=i2 
          min=i3           
          IF(ps(i3)>ps(i2)) THEN        
             i3= med 
             i2= min 
          END IF      
c 
             e22p=ps(i2) 
             e11p=ps(i3)    
          DO k=1,3 
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             cs(2,k)=an(i2,k) 
             cs(1,k)=an(i3,k) 
          END DO 
c 
      RETURN 
      END 
C 
C 
C 
      SUBROUTINE newperpHiSS(gamma1,alpha1,n1,R1,sigmaij,stressHiSS) 
C 
C Developed based on algorithm written by Gibson (2006) 
C 
C This function takes the HiSS surface defintion parameters and the stress point to  
C create a normal line from the Hydrostatic line to the stress point. It also finds the 
C line intersection point on the HiSS surface, assuming the two solutions for the 
C points on this line to be a quadratic relation. Three points are generated from an old 
C Newton-Rapshon scheme that then calls a function to find the coefficients and roots. 
C 
      INCLUDE 'aba_param.inc' !Required for ABAQUS UMAT 
C 
C Definition of Variables 
C 
C gamma - parameter gamma for the HiSS surface 
C alpha - parameter alpha for the HiSS surface 
C n - parameter n for the HiSS surface 
C R - parameter R for the HiSS surface 
C sigmaii - vector of principal stresses given 
C stressHiSS - stress vector of HiSS surface point 
C surfintercept 
C sigaa 
C a,b,c,d - define two point parametric equation of a line in 3D 
C s1, surferr, count 
C sigmaiia,sigmaiib 
C s1newa,s1newb 
C F,dF 
C rootsel - variable to select the appropriate root from the N-R scheme 
C xpoint - vector of three x points definining the polynomial 
C ypoint - vector of three y points definining the polynomial 
C qa,qb,qc - polynomial coefficients 
C qc1,qc2,qc3,qc4 - parameters to determine qa,qb,qc from the (x,y) points 
C 
      REAL*8 sigmaij(3),stressHiSS(3),stressHiSSa(3),stressHiSSb(3), 
     &       gamma1,alpha1,n1,R1,surfintercept1,sigaa,a,b,c,d,s1, 
     &       F,dF,s1newa,rootsel 
C     Variables required for the root calculation      
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      REAL*8 xpoint(3),ypoint(3),roots(2), 
     &       qa,qb,qc,qc1,qc2,qc3,qc4 
C 
      surfintercept1=(1./3.)*(((alpha1/gamma1)**(1./(2.-n1)))-R1) 
C 
C     Determine the hydrostatic stress point (sigaa) that creates a perpendicular line 
C     from the given stress point to the hydrostatic axis using the dot product rule for 
C     90 degrees 
      sigaa=(sigmaij(1)+sigmaij(2)+sigmaij(3))/3. 
C 
      IF (ABS(sigaa-surfintercept1)<0.00001) THEN 
        stressHiSS(1)=surfintercept1 
        stressHiSS(2)=surfintercept1 
        stressHiSS(3)=surfintercept1 
      ELSE 
C       Point 1 is (sigmaii(1),sigmaii(2),sigmaii(3)) and point 2 is (sigaa,sigaa,sigaa) 
C       Slope and intercept for equation of sigmaii(2)=f(sigmaii(1)) using two point 
C       parametric equation for line in 3D space. 
        a=(sigmaij(2)-sigaa)/(sigmaij(1)-sigaa) 
        b=(-sigaa)*a+sigaa 
C       Slope and intercept for equation of sigmaii(3)=f(sigmaii(1)) 
        c=(sigmaij(3)-sigaa)/(sigmaij(1)-sigaa) 
        d=(-sigaa)*c+sigaa 
C       This linear equations are substituded for sigmaii(2) and sigmaii(3) in the 
C       HiSS surface equation. 
C        
        s1=sigaa  !This term sets the initial value for sigma11 
C 
C       The following is the Newton-Raphson iteration given the function and its 
C       derivative. An additional component is required to compute both solutions to the 
C       flow surface (quadratic equation) and allow the algorithm to select the desired 
C       solution which is the one between the hydrostatic sigaa and the actual stressij 
C      (sigmaij). 
C 
C       Initialize Newton-Raphson to compute three points for the quadratic function. 
        DO k=0,3 
           F=(1./3.)*((s1**2)+((a*s1+b)**2)+((c*s1+d)**2)-(s1*(a*s1+b))- 
     &       ((a*s1+b)*(c*s1+d))-(s1*(c*s1+d)))-gamma1*((s1+(a*s1+b)+ 
     &       (c*s1+d)+R1)**2)+alpha1*((s1+(a*s1+b)+(c*s1+d)+R1)**n1) 
C           The following equation had a bug fixed at 2*c*c*s1 term on the first line. 
C           Originally 2*c*s1 
           dF=(1./3.)*(2.*s1+2.*a*a*s1+2.*a*b+2.*c*s1+2.*c*d+2.*a*s1+b+ 
     &          2.*a*c*s1+b*c+a*d+2.*c*s1+d)- 
     &          2.*gamma1*(s1+a*s1+b+c*s1+d+R1)*(1.+a+c)+ 
     &          n1*alpha1*((s1+a*s1+b+c*s1+d+R1)**(n1-1.))*(1.+a+c) 
            s1newa=s1-(F/dF) 
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            IF (k==1) THEN 
                xpoint(1)=s1 
                ypoint(1)=F 
            ELSEIF (k==2) THEN 
                xpoint(2)=s1 
                ypoint(2)=F 
            ELSEIF (k==3) THEN 
                xpoint(3)=s1 
                ypoint(3)=F 
            END IF 
            s1=s1newa 
        END DO 
C       Compute the roots of the quadratic function originated from the N-R 
        qc1=xpoint(1)*(ypoint(2)-ypoint(3))- 
     &      xpoint(2)*(ypoint(1)-ypoint(3))+ 
     &      xpoint(3)*(ypoint(1)-ypoint(2)) 
        qc2=xpoint(1)*xpoint(1)*(ypoint(2)-ypoint(3))- 
     &      xpoint(2)*xpoint(2)*(ypoint(1)-ypoint(3))+ 
     &      xpoint(3)*xpoint(3)*(ypoint(1)-ypoint(2)) 
        qc3=xpoint(1)*xpoint(1)*(xpoint(2)-xpoint(3))- 
     &      xpoint(2)*xpoint(2)*(xpoint(1)-xpoint(3))+ 
     &      xpoint(3)*xpoint(3)*(xpoint(1)-xpoint(2)) 
      qc4=xpoint(1)*xpoint(1)*(xpoint(2)*ypoint(3)-xpoint(3)*ypoint(2))- 
     &    xpoint(2)*xpoint(2)*(xpoint(1)*ypoint(3)-xpoint(3)*ypoint(1))+ 
     &    xpoint(3)*xpoint(3)*(xpoint(1)*ypoint(2)-xpoint(2)*ypoint(1)) 
        qc2=-qc2 
        qc4=-qc4 
C 
        qa=-qc1/qc3 
        qb=-qc2/qc3 
        qc=-qc4/qc3      
C 
        roots(1)=(-qb+SQRT(qb*qb-4.*qa*qc))/(2.*qa) 
        roots(2)=(-qb-SQRT(qb*qb-4.*qa*qc))/(2.*qa) 
C         
        stressHiSSa(1)=roots(1) 
        stressHiSSa(2)=a*roots(1)+b 
        stressHissa(3)=c*roots(1)+d 
C 
        stressHiSSb(1)=roots(2) 
        stressHiSSb(2)=a*roots(2)+b 
        stressHissb(3)=c*roots(2)+d 
C 
        rootsel=(stressHiSSa(1)-sigaa)*(sigmaij(1)-sigaa)+ 
     &          (stressHiSSa(2)-sigaa)*(sigmaij(2)-sigaa)+ 
     &          (stressHiSSa(3)-sigaa)*(sigmaij(3)-sigaa) 
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        IF (rootsel>0.) THEN 
            stressHiSS(1)=stressHiSSa(1) 
            stressHiSS(2)=stressHiSSa(2) 
            stressHiSS(3)=stressHiSSa(3) 
        ELSE 
            stressHiSS(1)=stressHiSSb(1) 
            stressHiSS(2)=stressHiSSb(2) 
            stressHiSS(3)=stressHiSSb(3) 
        END IF 
      END IF 
      RETURN 
      END 
C 
C 
C 
      SUBROUTINE dHiss(gamma2,alpha2,n2,R2,sii,dFds) 
C 
C Developed based on algorithm written by Gibson (2006) 
C 
C This function computes the normal vector dFds on the HiSS surface using the surface 
C parameters and the applied stress point as inputs 
C 
      INCLUDE 'aba_param.inc' !Required for ABAQUS UMAT 
C 
C Definition of variables 
C 
C gamma - parameter gamma for the HiSS surface 
C alpha - parameter alpha for the HiSS surface 
C n - parameter n for the HiSS surface 
C R - parameter R for the HiSS surface 
C sii - vector of principal stresses 
C dFds - normal vector to the HiSS surface 
C 
      REAL*8 sii(3),dFds(3),gamma2,alpha2,n2,R2 
C 
      dFds(1)=(1./3.)*(2.*sii(1)-sii(2)-sii(3))- 
     &        2.*gamma2*(sii(1)+sii(2)+sii(3)+R2)+ 
     &        n2*alpha2*((sii(1)+sii(2)+sii(3)+R2)**(n2-1.)) 
      dFds(2)=(1./3.)*(2.*sii(2)-sii(1)-sii(3))- 
     &        2.*gamma2*(sii(1)+sii(2)+sii(3)+R2)+ 
     &        n2*alpha2*((sii(1)+sii(2)+sii(3)+R2)**(n2-1.)) 
      dFds(3)=(1./3.)*(2.*sii(3)-sii(1)-sii(2))- 
     &        2.*gamma2*(sii(1)+sii(2)+sii(3)+R2)+ 
     &        n2*alpha2*((sii(1)+sii(2)+sii(3)+R2)**(n2-1.)) 
      RETURN 
      END 
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C 
C 
C 
      SUBROUTINE unitvector(vec,uvec) 
C 
C This function computes the unit vector of a given vector 
C 
      INCLUDE 'aba_param.inc' !Required for ABAQUS UMAT 
C 
C Definition of variables 
C 
C vec - vector 
C uvec - unit vector 
C 
      REAL*8 vec(3),uvec(3) 
C 
      DO k=1,3 
        uvec(k)=vec(k)*(1./(SQRT(vec(1)*vec(1)+ 
     &                           vec(2)*vec(2)+vec(3)*vec(3)))) 
      END DO 
      RETURN 
      END 
C 
C 
C 
      SUBROUTINE gethydrpntext(sigii,pointHiSS,hydrostress) 
C 
C Developed based on algorithm written by Gibson (2006) 
C 
C This function computes the intersection between the line passing by the applied stress 
C and the HiSS stress points and the Hydrostatic line 
C 
      INCLUDE 'aba_param.inc' !Required for ABAQUS UMAT 
C 
C Definition of Variables 
C 
C sigii - vector of applied stress 
C pointHiSS - vector of point on HiSS surface 
C hydrostress - output of this function - the intercept 
C s13slope - slope of the 3D line 
C 
      REAL*8 sigii(3),pointHiSS(3),s13slope,hydrostress 
C 
      s13slope=(pointHiSS(1)-sigii(1))/(pointHiSS(3)-sigii(3)) 
C      IF (1.-s13slope==0.) THEN 
C        hydrostress = 0. 
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C      ELSE 
      hydrostress = (pointHiSS(1)-(s13slope*pointHiSS(3)))/(1.-s13slope) 
C      END IF 
      RETURN 
      END 
C 
C 
C 
      SUBROUTINE HNR(g,u,lambda1,gamma1,alpha1,n1,R1, 
     &               stressHiSS,dFds) 
C 
C Developed based on algorithm written by Gibson (2006) 
C 
C This function applies a Newton-Raphson algorithm to find a point on the Hiss 
C surface that is normal to the applied stress point. 
C 
      REAL*8 g(3),u(3),stressHiSS(3),dFds(3),unew(3) 
      REAL*8 lambda1,gamma1,alpha1,n1,R1 
 
      REAL*8 F1,F2,F3,F4,vct1,vct2,vct3,vct4,vct1store,vct2store, 
     &       vct3store,vct4store,dF1d1,dF1d2,dF1d3,dF1dlm,dF2d1,dF2d2, 
     &       dF2d3,dF2dlm,dF3d1,dF3d2,dF3d3,dF3dlm,dF4d1,dF4d2,dF4d3, 
     &       dF4dlm,dF1d1store,dF1d2store,dF1d3store,dF1dlmstore, 
     &       dF2d1store,dF2d2store,dF2d3store,dF2dlmstore,dF3d1store, 
     &       dF3d2store,dF3d3store,dF3dlmstore,dF4d1store,dF4d2store, 
     &       dF4d3store,dF4dlmstore,magold,magnew,errold,errnew, 
     &       surfintercept1 
      INTEGER FLAG,imax   
C 
      surfintercept1=(1./3.)*(((alpha1/gamma1)**(1./(2.-n1)))-R1) 
      FLAG = 0  !Flag if solution is complex 
c     Compute magnitude for error analysis 
      magold=SQRT(u(1)**2.+u(2)**2.+u(3)**2.) 
      errold=1. 
      imax=20 
      DO i=1,imax 
c        
       IF (FLAG==0) THEN 
        F1=(g(1)-u(1))-lambda1*(((1./3.)*(2.*u(1)-u(2)-u(3))-2.*gamma1* 
     &    (u(1)+u(2)+u(3)+R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.)))) 
        F2=(g(2)-u(2))-lambda1*(((1./3.)*(2.*u(2)-u(1)-u(3))-2.*gamma1* 
     &    (u(1)+u(2)+u(3)+R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.)))) 
        F3=(g(3)-u(3))-lambda1*(((1./3.)*(2.*u(3)-u(2)-u(1))-2.*gamma1* 
     &    (u(1)+u(2)+u(3)+R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.)))) 
        F4=(1./3.)*(u(1)*u(1)+u(2)*u(2)+u(3)*u(3)-u(1)*u(2)-u(2)*u(3)- 
     &    u(1)*u(3))-gamma1*((u(1)+u(2)+u(3)+R1)**2.)+alpha1*((u(1)+ 
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     &    u(2)+u(3)+R1)**n1) 
C 
        dF1d1=-1.-lambda1*((1./3.)*(2.)-2.*gamma1*(1.)+alpha1*n1* 
     7        (n1-1.)*((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF1d2=-lambda1*((1./3.)*(-1.)-2.*gamma1*(1.)+alpha1*n1*(n1-1.)* 
     &        ((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF1d3=-lambda1*((1./3.)*(-1.)-2.*gamma1*(1.)+alpha1*n1*(n1-1.)* 
     &        ((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF1dlm=-((1./3.)*(2*u(1)-u(2)-u(3))-2.*gamma1*(u(1)+u(2)+u(3)+ 
     &        R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.))) 
C 
        dF2d2=-1.-lambda1*((1./3.)*(2.)-2.*gamma1*(1.)+alpha1*n1* 
     &        (n1-1.)*((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF2d1=-lambda1*((1./3.)*(-1.)-2.*gamma1*(1.)+alpha1*n1*(n1-1.)* 
     &        ((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF2d3=-lambda1*((1./3.)*(-1.)-2.*gamma1*(1.)+alpha1*n1*(n1-1.)* 
     &        ((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF2dlm=-((1./3.)*(2.*u(2)-u(1)-u(3))-2.*gamma1*(u(1)+u(2)+u(3)+ 
     &        R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.))) 
C 
        dF3d3=-1.-lambda1*((1./3.)*(2.)-2.*gamma1*(1.)+alpha1*n1* 
     &        (n1-1.)*((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF3d2=-lambda1*((1./3.)*(-1.)-2.*gamma1*(1.)+alpha1*n1*(n1-1.)* 
     &        ((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF3d1=-lambda1*((1./3.)*(-1.)-2.*gamma1*(1.)+alpha1*n1*(n1-1.)* 
     &        ((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF3dlm=-((1./3.)*(2.*u(3)-u(2)-u(1))-2.*gamma1*(u(1)+u(2)+u(3)+ 
     $         R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.))) 
C 
       dF4d1=((1./3.)*(2.*u(1)-u(2)-u(3))-2.*gamma1*(u(1)+u(2)+u(3)+R1)+ 
     &        alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.))) 
       dF4d2=((1./3.)*(2.*u(2)-u(1)-u(3))-2.*gamma1*(u(1)+u(2)+u(3)+R1)+ 
     &        alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.))) 
       dF4d3=((1./3.)*(2.*u(3)-u(2)-u(1))-2.*gamma1*(u(1)+u(2)+u(3)+R1)+ 
     &        alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.))) 
       dF4dlm=0. 
C 
        vct1store=-F1+dF1d1*u(1)+dF1d2*u(2)+dF1d3*u(3)+dF1dlm*lambda1 
        vct2store=-F2+dF2d1*u(1)+dF2d2*u(2)+dF2d3*u(3)+dF2dlm*lambda1 
        vct3store=-F3+dF3d1*u(1)+dF3d2*u(2)+dF3d3*u(3)+dF3dlm*lambda1 
        vct4store=-F4+dF4d1*u(1)+dF4d2*u(2)+dF4d3*u(3)+dF4dlm*lambda1 
C       
        vct1=vct4store 
        vct2=vct1store 
        vct3=vct2store 
        vct4=vct3store 
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C 
        dF1d1store=dF1d1 
        dF1d2store=dF1d2 
        dF1d3store=dF1d3 
        dF1dlmstore=dF1dlm 
C 
        dF2d1store=dF2d1 
        dF2d2store=dF2d2 
        dF2d3store=dF2d3 
        dF2dlmstore=dF2dlm 
C 
        dF3d1store=dF3d1 
        dF3d2store=dF3d2 
        dF3d3store=dF3d3 
        dF3dlmstore=dF3dlm 
C 
        dF4d1store=dF4d1 
        dF4d2store=dF4d2 
        dF4d3store=dF4d3 
        dF4dlmstore=dF4dlm 
C 
        dF1d1=dF4d1store 
        dF1d2=dF4dlmstore 
        dF1d3=dF4d2store 
        dF1dlm=dF4d3store 
C 
        dF2d1=dF1d1store 
        dF2d2=dF1dlmstore 
        dF2d3=dF1d2store 
        dF2dlm=dF1d3store 
C 
        dF3d1=dF2d1store 
        dF3d2=dF2dlmstore 
        dF3d3=dF2d2store 
        dF3dlm=dF2d3store 
C 
        dF4d1=dF3d1store 
        dF4d2=dF3dlmstore 
        dF4d3=dF3d2store 
        dF4dlm=dF3d3store 
C 
C       begin Gauss-Jordan Elminiation 
C  
C       normalize first row 
        dF1d1store=dF1d1 
        dF1d1=1. 
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        dF1d2=dF1d2/dF1d1store 
        dF1d3=dF1d3/dF1d1store 
        dF1dlm=dF1dlm/dF1d1store 
        vct1=vct1/dF1d1store 
C  
C       column1 
        dF4d1store=dF4d1 
        dF4d1=0. 
        dF4d2=dF4d2-dF1d2*dF4d1store 
        dF4d3=dF4d3-dF1d3*dF4d1store 
        dF4dlm=dF4dlm-dF1dlm*dF4d1store 
        vct4=vct4-vct1*dF4d1store 
C 
        dF3d1store=dF3d1 
        dF3d1=0. 
        dF3d2=dF3d2-dF1d2*dF3d1store 
        dF3d3=dF3d3-dF1d3*dF3d1store 
        dF3dlm=dF3dlm-dF1dlm*dF3d1store 
        vct3=vct3-vct1*dF3d1store 
C 
        dF2d1store=dF2d1 
        dF2d1=0. 
        dF2d2=dF2d2-dF1d2*dF2d1store 
        dF2d3=dF2d3-dF1d3*dF2d1store 
        dF2dlm=dF2dlm-dF1dlm*dF2d1store 
        vct2=vct2-vct1*dF2d1store 
C 
C       normalize second row 
        dF2d2store=dF2d2 
        dF2d1=dF2d1/dF2d2store 
        dF2d2=1. 
        dF2d3=dF2d3/dF2d2store 
        dF2dlm=dF2dlm/dF2d2store 
        vct2=vct2/dF2d2store 
C 
C       column2 
        dF4d2store=dF4d2 
        dF4d2=0. 
        dF4d3=dF4d3-dF2d3*dF4d2store 
        dF4dlm=dF4dlm-dF2dlm*dF4d2store 
        vct4=vct4-vct2*dF4d2store 
C 
        dF3d2store=dF3d2 
        dF3d2=0. 
        dF3d3=dF3d3-dF2d3*dF3d2store 
        dF3dlm=dF3dlm-dF2dlm*dF3d2store 
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        vct3=vct3-vct2*dF3d2store 
C 
C       normalize third row 
        dF3d3store=dF3d3 
        dF3d1=dF3d1/dF3d3store 
        dF3d2=dF3d2/dF3d3store 
        dF3d3=1. 
        dF3dlm=dF3dlm/dF3d3store 
        vct3=vct3/dF3d3store 
C         
C       column3 
        dF4d3store=dF4d3 
        dF4d3=0. 
        dF4dlm=dF4dlm-dF3dlm*dF4d3store 
        vct4=vct4-vct3*dF4d3store 
C 
C       solveforallnewstuff 
        unew(3)=vct4/dF4dlm 
        unew(2)=(vct3-dF3dlm*unew(3))/dF3d3 
        lambda1=(vct2-dF2dlm*unew(3)-dF2d3*unew(2))/dF2d2 
        unew(1)=(vct1-dF1dlm*unew(3)-dF1d3*unew(2)-dF1d2*lambda1)/dF1d1 
c        
        IF (unew(1)<-R1/3. .OR. unew(1)>surfintercept1) THEN 
            u(1)=0 
            u(2)=0. 
            u(3)=0. 
            FLAG=1 
            EXIT 
        END IF 
        IF (unew(2)<-R1/3. .OR. unew(2)>surfintercept1) THEN 
            u(1)=0 
            u(2)=0. 
            u(3)=0. 
            FLAG=1 
            EXIT 
        END IF 
        IF (unew(3)<-R1/3. .OR. unew(3)>surfintercept1) THEN 
            u(1)=0 
            u(2)=0. 
            u(3)=0. 
            FLAG=1 
            EXIT 
        END IF 
 
        IF (unew(1)+unew(2)+unew(3)+R1<0.) THEN 
            u(1)=0. 
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            u(2)=0. 
            u(3)=0. 
            FLAG=1 
            EXIT 
        ELSE 
            u(1)=unew(1) !0. 
            u(2)=unew(2) !0. 
            u(3)=unew(3) !0. 
        END IF 
C      Verify error with tolerance 
        magnew=SQRT(u(1)**2.+u(2)**2.+u(3)**2.) 
        errnew=ABS(magold-magnew)/magnew 
       IF (errnew <=0.01) THEN 
C            test=1 
            EXIT 
       ELSE 
            !IF (errnew>errold) THEN 
            !    countconver=countconver+1 
            !ENDIF 
            !IF (countconver >=10) THEN 
            !    !FLAG=1 
            !    !EXIT 
            !END IF 
       END IF 
       magold=magnew 
       errold=errnew 
c  
       END IF 
      END DO 
      IF (i>imax) THEN 
        stressHiSS(1)=0. 
        stressHiSS(2)=0. 
        stressHiSS(3)=0. 
        dFds(1)=0. 
        dFds(2)=0. 
        dFds(3)=0. 
      ELSE 
        stressHiSS(1)=u(1) 
        stressHiSS(2)=u(2) 
        stressHiSS(3)=u(3) 
        IF (FLAG==0) THEN 
        dFds(1)=(((1./3.)*(2.*u(1)-u(2)-u(3))-2.*gamma1*(u(1)+u(2)+u(3)+ 
     &          R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.)))) 
        dFds(2)=(((1./3.)*(2.*u(2)-u(1)-u(3))-2.*gamma1*(u(1)+u(2)+u(3)+ 
     &          R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.)))) 
        dFds(3)=(((1./3.)*(2.*u(3)-u(2)-u(1))-2.*gamma1*(u(1)+u(2)+u(3)+ 
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     &          R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.)))) 
        ELSE 
            dFds(1)=0. 
            dFds(2)=0. 
            dFds(3)=0. 
        END IF 
C 
      END IF 
      RETURN 
      END 
C 
C 
C 
      SUBROUTINE princord(pps,psor) 
c 
c     pps - principal stress obtain from ABAQUS subroutine sprind 
c     psor - ordered principal p33>>p22>>p11 
c 
      INCLUDE 'aba_param.inc' 
      REAL*8 pps(3),psor(3)       
c      
c the principal values ps(3) are not ordered; 
c now they are ordered to psor(3)>psor(2)>psor(1), being compression (-). 
c 
      imax=1 
      smax=pps(1) 
      DO i=2,3 
        IF (pps(i)>=smax) THEN         
            imax=i 
            smax=pps(i) 
        END IF           
      END DO     
c 
      psor(3)=pps(imax) 
c 
      IF (imax==1) THEN                
        i2=2 
        i3=3 
      ELSEIF (imax==2) THEN 
        i2=1 
        i3=3 
      ELSE 
        i2=1 
        i3=2 
      END IF                          
c 
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      med=i2 
      min=i3           
      IF (pps(i3)>pps(i2)) THEN        
        i3= med 
        i2= min 
      END IF      
c 
      psor(2)=pps(i2) 
      psor(1)=pps(i3)    
c 
      RETURN 
      END 
C 
C 
C         
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Appendix B.   Elasto-Viscoplastic UMAT 

Description of subroutines 
 
Subroutine name Description 
UMAT Main subroutine called from ABAQUS 

input file. It is related to the material 
selection in the input file. 

newperpHiSS This function takes the HiSS surface 
definition parameters and the stress point to 
create a normal line from the Hydrostatic 
line to the stress point. It also finds the line 
intersection point on the HiSS surface, 
assuming the two solutions for the points 
on this line to be a quadratic relation. 
Adapted from Gibson (2006) for this 
UMAT. 

dHiss This function computes the normal vector 
dFds on the HiSS surface using the surface 
parameters and the applied stress point. 
Adapted from Gibson (2006) for this 
UMAT. 

Gethydrpntext This function computes the intersection 
between the line passing by the applied 
stress, the HiSS stress points and the 
Hydrostatic line. Adapted from Gibson 
(2006) for this UMAT. 

HNR This function applies a Newton-Raphson 
algorithm to find a point on the Hiss 
surface that is normal to the applied stress 
point (Gibson, 2006). 

Kbacktr This subroutine is used to transform the 4th 
order tensor in the local coordinate system 
(in the principal axes) back into a 4th order 
tensor in the global coordinate system 
(global) (Hinterhoelzl, 1999). 

Kprind This subroutine is used to order the 
principal stress/strain tensor if the form of  
e33p>e22p>e11p. This will comply with 
the requirement of symmetry of the 
transverse isotropy. Accordingly the array 
of the cosines is also changed to cs(3,3). 

Unitvector This function computes the unit vector of a 
given vector. 
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C U M A T 
C 
C ABAQUS USER MATERIAL MODEL FOR Elasto-ViscoPlasticity 
C Linear Elastic Theory and VP based on Perzyna-HiSS 
C  
C WRITTEN BY REGIS L. CARVALHO, with components adapted from 
C Gibson (2006) 
C 
C 2008-2011 
C  
C FILENAME: evphiss8a_SBS.for 
c 
c INTRODUCTION      
c 
c 3-dimensional formulation with adaptation for plane strain problems 
c 
c Assumptions: small strains 
c              small rotations of the principal axes of strain  
c 
c Material Data: 
c  It is choosen to define all the material parameters like prony series, damage 
C  functions and viscoplastic model. 
C  Internal State Variables are defined as follows: 
c       - Viscoplastic strain components: statev(l), with l = 1 to 6 
c       - HiSS surface stress: statev(k), with k = 7 to 9 
c       - HiSS normals: statev(j), with j = 10 to 12 
c 
c  E used in the umat is  in [kPa]. So the geometry has to be defined in  
c  mm and all the loading in [kN] for forces and [mm] for displacement. 
c  
c Temperature: 
c  The influence of the temperature on the time dependent behavior is modelled 
c  by making use of the time-temperature-superposition-principle (TTSP) for  
c  thermorheolgical simple materials. 
c  The implementation is done for the definition of the shift factor aT and used 
c  to compute the reduced time increment dtau. 
c 
c 
c The umat is programmed for a nonlinear viscoelastic boundary value problem. 
c No correspondence principle is used. Nevertheless pseudostrains are defined. 
c 
c Principal axis of the strain 3 is axis of transverse isotropy  
c 
c The programming will make use of vector and matrix formulations for stress, 
c strain and jacobian instead of tensor formulation. 
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c 
c The user must provide the calculation of (Variables of Abaqus): 
c 
c      ddsdde(ntens,ntens)(Jakobian-Matrix of the constitutive model) 
c      stress(ntens)      (Cauchy stress tensor) 
c      statev(nstatv)     (array containing the solution dep. *DEPVAR) 
c 
c      and if necessary the calculation of: 
c 
c      sse     (specific elastic strain energy) 
c      spd     (plastic dissipation) 
c      scd     (creep-dissipation) 
c 
c Abaqus provides the following variables:            
c 
c      stran(ntens)  (array of the total strain components without the thermal 
c                     strains) 
c      dstran(ntens) (array of strain increments without thermal strain incr.) 
c      time(1)       (value of step time at the beginning of the current incr.)  
c      time(2)       (value of the total time at the begin. of the curr. incr.) 
c      dtime         (time increment) 
c      temp          (temperature at the start of the increment) 
c      dtemp         (increment of temperature) 
c      predef        (array of predefined field variables)    
c      dpred         (array of incr. of the predefined field variables)     
c      cmname        (name given on *MATERIAL) 
c      ndi           (number of direct stress components) 
c      nshr          (number of engineering shear stress components)      
c      ntens         ndi+nshr 
c      nstatv        (number of solution dependent state variables) 
c      props         (array of material constants) 
c      nprops(nprops)(number of material constants) 
c      coords(3)     (coordinates of this point)    
c      drot(3,3)     (rotation increment matrix) 
c      celent        (characteristic element length) 
c      dfgrdo(3,3)   (deformation gradient at the beginning of the incr.) 
c      dfgrd1(3,3)   (deformation gradient at the end of the incr.) 
c      noel          (elementnumber) 
c      npt           (integration point number) 
c      layer         (composite layer number) 
c      kspt          (sectionpoint number within the current layer) 
c      kstep         (step number) 
c      kinc          (increment number) 
c 
C 
C 1. Declaration of variables provided by ABAQUS 
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C    UMAT subroutine header 
C 
      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 
     1 RPL,DDSDDT,DRPLDE,DRPLDT, 
     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 
     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 
     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*80 CMNAME 
      DIMENSION STRESS(NTENS),STATEV(NSTATV), 
     1 DDSDDE(NTENS,NTENS), 
     2 DDSDDT(NTENS),DRPLDE(NTENS), 
     3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 
     4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 
C 
C 2. Declaration of local variables 
C 
C 2.1. Definition of variables required for the elastic component 
C 
C mu, lambda - elastic properties, lamé constants 
C  
      REAL*8 mu,lambda2  
C 
C 2.2. Definition of variables required for the VP subroutine 
C 
C gamma, alpha, n, R, alpha0, R0, kappa, m, expo, tau, NN - parameters HiSS surface 
C xi - volumetric viscoplastic strains 
C ps - vector of applied principal stresses, fixsig11, fixsig22, fixsig33 
C surfstress - stress vector of HiSS surface point 
C dFdsigma - vector of derivatives of F with respect to sigma 
C Dist = (F/F'0) - 1 
C HiSScentpoints -  vector of points on surface at convergence 
C centnorm - normal vector on the center point of convergence 
C intestJstress - Second invariant (J2d) of deviatoric stress tensor 
C intestIstress - First invariant (I1) of stress tensor 
C intestJsurf - J2d corresponding to I1 on the Hiss Surface 
C surfintercept - point where the HiSS surface intercepts the Hydrostatic line 
C perpiii - volumetric stress or pressure = (sigma1 + sigma2 + sigma3)/3 
C hydrline - point where the line normal to HiSS intercept on the Hydrostatic line 
C DistA - distance from HiSS surface point and applied stress 
C DistB - distance form Hydrostatic line and HiSS surface point 
C devpdt - viscoplastic strain rate 
C evp - viscoplastic principal strains corresponding to stress increment i 
C psOLD - previous applied principal stress 
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C surfstressOLD - previous HiSS surface stress 
C dfdsigmeOLD - previous normals to HiSS surface 
C an - matrix of direction cosines for stress 
C evpt - viscoplastic strain tensor corresponding to stress increment i 
C ane - matrix of direction cosines for viscoplastic strain 
C stressNEW - new stress tensor (increment i+1) 
C stressOLD - current stress tensor (increment i) 
C destran - matrix of six components of elastic strain 
C vetor - auxiliar vector of principal values (vetor(3)) 
C cs(3,3) - new cosine matrix from the transformation of principal stresses 
C sit, slopetangent,slopenormal,anglenormal,angleline,anglecheck - auxiliary 
C  variables to define the normal-free zone 
C 
      REAL*8 ps(3),surfstress(3),dFdsigma(3), 
     & HiSScentpoints(3),centnorm(3),devpdt(3),evp(3), 
     & psOLD(3),surfstressOLD(3),dfdsigmaOLD(3),an(3,3),evpt(6), 
     & ane(3,3),stressNEW(NTENS),stressOLD(NTENS),destran(NTENS), 
     & vetor(3),cs(3,3) 
C      
      REAL*8 alpha0,gamma,R0,n,kappa,m,expo,tau,NN,k3,xi,alpha,R, 
     & Dist,intestJstress,intestIstress,intestJsurf,surfintercept, 
     & perpiii, 
     & hydrline, 
     & DistA,DistB,lambda,A,tempshift,sit,slopetangent, 
     & slopenormal,anglenormal,angleline,anglecheck 
C 
C 
C 3. Material properties and variable initialization 
C 
C 3.1. Elastic properties 
C 
      mu=759973./(2.*(1.+.35)) !Equivalent to 0.018 Hz ~28.6 kph 
      lambda2=(.35*759973.)/((1.+.35)*(1.-2.*.35)) 
C 
C      E=365836 (for 64°C), 759973 (for 45°C) and 1087552 (for 39°C) 
C      lambda=65172.41 
c 
C 3.2. Viscoplastic properties 
c 
      alpha0=0.0068 
      gamma=0.0428 
      R0=38.4245 
      n=2.2564 
      kappa=-68.096 
      m=3227.4 
      expo=0.3306 
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      tau=-8.7801 
      NN=1.076 
      k3=2.5782 
c 
c Temperature Shift Factor 
c 
      tempshift=0.000466 
c       
c     tempshift=0.002615 for 39°C - lab test at UMD 
c     tempshift=0.000466 for 45°C 
c     tempshift=0.00000193 for 64°C       
c 
C 3.3. Initialization of STATEV in case it is first increment 
C 
C     The first 12 internal state variables are used in the VP model, as described 
C     below. variable 13 stores the damage variable, S, of the VECD model and the 
C     remaining 6*nE variables are auxiliaries in the pseudo strain calculations. 
C 
C     If the first step and increment, assume xi=0,otherwise 
C     xi=statev(1)+statev(2)+statev(3) 
c      print *, kstep, kinc 
      IF (kstep==1 .AND. kinc==1) THEN 
C       first six are VP strains, 11,22,33,12,13,23       
        STATEV(1)=0. 
        STATEV(2)=0. 
        STATEV(3)=0. 
        STATEV(4)=0. 
        STATEV(5)=0. 
        STATEV(6)=0. 
C       next three are HiSS surface stress in principal domain 
        STATEV(7)=0. 
        STATEV(8)=0. 
        STATEV(9)=0. 
C       last three are HiSS normals (dF/dsigma) in principal domain 
        STATEV(10)=0. 
        STATEV(11)=0. 
        STATEV(12)=0. 
      END IF 
c 
c     Read S from the statev(13) provided by Abaqus 
c     if you want to start the calculations with from zero different initial value 
c     for S, you have to change the value for Safter the two "if" commands 
c 
      S = statev(13) 
      IF (kstep==1) THEN 
       IF (kinc==1) THEN 
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        S=0.d0 
       END IF 
      END IF 
c     If you want to run calculations without damage, means just linear visco- 
c     elastic calculations, you have to remove the "c" in front of the next  
c     line to set them effective and set S=0.d0 for every iteration. 
      S=0.d0 
c 
C 3.4. Initilization of vectors and matrices 
C 
      DO I=1,3 
        vetor(I)=0. 
        psOLD(I)=0. 
        ps(I)=0. 
        DO J=1,3 
            an(I,J)=0. 
            cs(I,J)=0. 
            ane(I,J)=0. 
        END DO 
      END DO      
c 
C 
C 4. Elastic Calculations 
C 
C 4.1. Initialize Jacobian matrix and stressOLD=STRESS 
C 
      DO I=1,NTENS 
        stressOLD(I)=STRESS(I) 
        DO J=1,NTENS 
          ddsdde(I,J)=0. 
        END DO 
      END DO 
C 
C 4.2. Compute jacobian 
C 
      DO I=1,NDI 
        DO J=1,NDI 
          DDSDDE(I,J)=lambda2 
        END DO 
        DDSDDE(I,I)=lambda2+2*mu 
      END DO 
      DO I=NDI+1,NTENS 
        DDSDDE(I,I)=mu 
      END DO 
C 
c 5. ViscoPlastic Calculations 
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c 
C 5.1. Compute principal stresses   
C 
C     Store current stress (before VP calculations) as stressOLD=STRESS 
C 
      DO I=1,NTENS 
        stressOLD(I)=STRESS(I) 
      END DO 
C 
C     Transform the old stress tensor into principal stresses vetor(3) 
C 
      CALL SPRIND(stressOLD,vetor,an,1,NDI,NSHR) 
C 
C     Put the principal old stresses in order 33>22>11. This is done so when 
C     the sign is changed, (-) compression becomes (+) and 11>22>33. 
C 
      CALL princord(vetor,psOLD) 
C 
C     psOLD comes in normal ABAQUS notation compression (-). The following 3 
C     lines changes the sign of the principal values, making compression (+) 
C     and shifting the order to 11>>22>>33 as required by VP model. 
C 
C 5.5. Store old stress, surfstress and dFdsigma 
C 
C     The stress comes from ABAQUS STRESS variable; surfstress from STATEV(7 to 
9) 
C     and dFdsigma from STATEV(10 to 12). 
C 
      psOLD(1)=-psOLD(1) 
      psOLD(2)=-psOLD(2) 
      psOLD(3)=-psOLD(3) 
      surfstressOLD(1)=STATEV(7) 
      surfstressOLD(2)=STATEV(8) 
      surfstressOLD(3)=STATEV(9) 
      dfdsigmaOLD(1)=STATEV(10) 
      dfdsigmaOLD(2)=STATEV(11) 
      dfdsigmaOLD(3)=STATEV(12) 
C 
C 5.6. Compute new stress for current strain increment 
C       
      DO I=1,NTENS 
        stressNEW(I)=STRESS(I) 
        DO J=1,NTENS 
          stressNEW(I)= stressNEW(I)+DDSDDE(I,J)*DSTRAN(J) 
        END DO 
      END DO 
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C 
C     Transform the new stress tensor into principal stresses vetor 
C 
      CALL SPRIND(stressNEW,vetor,an,1,NDI,NSHR) 
C       
C     Put the principal new stresses in order 33>22>11. This is done so when 
C     the sign is changed, (-) compression becomes (+) and 11>22>33. The 
C     subroutine also change the cossine matrix to accomodate the new order. 
C     The new matrix will be called cs(3,3). 
C 
      CALL kprind(vetor,an,cs,ps) 
C 
C 5.7. Compute viscoplastic strains 
C 
      DO I=1,6 
        evpt(I)=STATEV(I) 
      END DO 
      CALL SPRIND(evpt,evp,ane,2,NDI,NSHR) 
      xi=SQRT((evp(1)**2.)+(evp(2)**2.)+(evp(3)**2.)) 
C 
C     The VP model was formulated with compression (+), different from ABAQUS 
C     conventional compression (-). The following three lines change signs of 
C     principal stresses without changing directions. After the calculations 
C     are done, the viscoplastic strain signs are changed back to conventional 
C     notation of compression (-).  
      ps(1)=-ps(1) 
      ps(2)=-ps(2) 
      ps(3)=-ps(3) 
c  
C     Compute initial parameters alpha(xi) and R(xi) 
      alpha=alpha0*EXP(xi*kappa) 
      R=R0+m*(xi**expo) 
C 
C     Verify if the point perpedicular to the the stress point is either to the 
C     left or to the right of the intersection of the HiSS surface and the 
C     Hydrostatic line. 
      intestIstress=ps(1)+ps(2)+ps(3) 
      surfintercept=(1./3.)*(((alpha/gamma)**(1./(2.-n)))-R) 
      perpiii=intestIstress/3. 
C 
      IF (ps(1)==ps(2) .AND. ps(2)==ps(3)) THEN !Point on Hydrostatic 
        IF (ps(1)==0.) THEN 
            DO i=1,3 
                surfstress(i)=0. 
                dFdsigma(i)=0. 
            END DO 
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            Dist = 0. 
            A = 1. 
        ELSEIF (ps(1)<=surfintercept) THEN 
            DO i=1,3 
                surfstress(i)=0. 
                dFdsigma(i)=0. 
            END DO 
            Dist = 0. 
            A = 1. 
        ELSE 
            DO i=1,3 
                surfstress(i)=surfintercept 
                dFdsigma(i)=0. !Initialize dFdsigma for subroutine below 
            END DO 
            intestJstress = (1./3.)*(ps(1)**2+ps(2)**2+ps(3)**2- 
     &                  ps(1)*ps(2)-ps(2)*ps(3)-ps(1)*ps(3)) 
            CALL dHiSS(gamma, alpha, n, R, surfstress,dFdsigma) 
            IF (intestJstress<=0.) THEN 
                A = 0. 
                Dist = 0. 
            ELSE 
              A=(ABS(ATAN(SQRT(intestJstress)/intestIstress)/0.528))**k3 
                Dist = ((SQRT(3.*(ps(1)-surfintercept)**2) 
     &                 +surfintercept*SQRT(3.))/ 
     &                 (surfintercept*SQRT(3.)))-1. 
            END IF 
C 
        END IF 
C         
      ELSE !Point not on Hydrostatic 
C       Verify if point is outside the HiSS surface 
        intestJstress = (1./3.)*(ps(1)**2+ps(2)**2+ps(3)**2- 
     &                  ps(1)*ps(2)-ps(2)*ps(3)-ps(1)*ps(3)) 
        IF (intestIstress<-R) THEN !Prevent tension-dominant areas 
            intestJsurf = -9999 
        ELSE 
            intestJsurf = gamma*((intestIstress+R)**2) 
     &                    -alpha*((intestIstress+R)**n) 
        END IF 
        IF (intestIstress<=3.*surfintercept .AND.  
     &      intestJstress<=intestJsurf) THEN 
            DO i=1,3 
                surfstress(i)=0. 
                dFdsigma(i)=0. 
            END DO 
            Dist = 0. 
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            A = 1.0 
C 
        ELSE !Outside surface -> VP Flow 
C        
            !Verify is the point is located in normal free zone 
            !Compute tangent to the intercept point in the J2D^(1/2)xI1 space 
            !at the tension side 
c             
            !surface intercept at tension side 
            sit=-R+1.*10.**(-10.) 
            !slope of the tangent to the surface intercept in tension 
            slopetangent=(gamma*(2.*R+2.*sit)-alpha*n*(R+sit)**(n-1.))/ 
     &               (2.*(gamma*(R+sit)**2-alpha*(R+sit)**n)**(1./2.)) 
            !slope of the normal to the surface intercept in tension 
            slopenormal=TAN(ATAN(slopetangent)+3.1415927/2.) 
            !angle of the normal 
            IF (ATAN(slopenormal)>0) THEN 
                anglenormal=ATAN(slopenormal) 
            ELSE 
                anglenormal=3.1415927-ABS(ATAN(slopenormal)) 
            END IF 
            !angle line between surface intercept in tension and stress point 
            angleline=ATAN((intestJstress**(1./2.))/(intestIstress+R)) 
c             
            IF (angleline>0) THEN 
                anglecheck=angleline 
            ELSE 
                anglecheck=3.1415927-ABS(angleline) 
            END IF 
c             
            IF (anglecheck>=anglenormal) THEN 
                !inside normal free zone - Supress VP Flow 
                A=0. 
                Dist=0. 
            ELSE 
                !Outside normal free zone -> VP Flow 
C 
C               Search for the stress point on HiSS surface normal to the 
C               the surface and on the direction of the applied stress point. 
C 
            IF (STATEV(7)+STATEV(8)+STATEV(9)==0.) THEN 
C 
                lambda=1. 
                surfstressOLD(1)=perpiii 
                surfstressOLD(2)=perpiii 
                surfstressOLD(3)=perpiii 
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C                 
             IF (surfstressOLD(1)+surfstressOLD(2)+surfstressOLD(3) 
     &           +R>0.) THEN 
                CALL HNR(ps,surfstressOLD,lambda,gamma,alpha,n,R, 
     &                   HiSScentpoints,centnorm) 
             ELSE 
                HiSScentpoints(1)=0. 
                HiSScentpoints(2)=0. 
                HiSScentpoints(3)=0. 
                centnorm(1)=0. 
                centnorm(2)=0. 
                centnorm(3)=0. 
             END IF 
C                 
            ELSE 
                lambda=(((psOLD(1)-surfstressOLD(1))**2+ 
     &                   (psOLD(2)-surfstressOLD(2))**2+ 
     &                   (psOLD(3)-surfstressOLD(3))**2)**0.5)/ 
     &                  ((dfdsigmaOLD(1)**2+dfdsigmaOLD(2)**2+ 
     &                   dfdsigmaOLD(3)**2)**0.5) 
C 
             IF (surfstressOLD(1)+surfstressOLD(2)+surfstressOLD(3) 
     &           +R>0.) THEN 
                CALL HNR(ps,surfstressOLD,lambda,gamma,alpha,n,R, 
     &                   HiSScentpoints,centnorm) 
             ELSE 
                HiSScentpoints(1)=0. 
                HiSScentpoints(2)=0. 
                HiSScentpoints(3)=0. 
                centnorm(1)=0. 
                centnorm(2)=0. 
                centnorm(3)=0. 
             END IF 
            END IF 
C 
C           Patch to avoid complex number. My original formulation HiSScentpoints(1)==-
R/3. 
C           Below is a new try 
            IF (HiSScentpoints(1)==HiSScentpoints(2) .AND. 
     &          HiSScentpoints(2)==HiSScentpoints(3) .AND. 
     &          HiSScentpoints(1)==0.) THEN 
                A=0. 
                Dist=0. 
            ELSE   
                CALL gethydrpntext(ps, HiSScentpoints,hydrline) 
                DistA=SQRT((HiSScentpoints(1)-ps(1))**2.+ 
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     &                     (HiSScentpoints(2)-ps(2))**2.+ 
     &                     (HiSScentpoints(3)-ps(3))**2.) 
                DistB=SQRT((HiSScentpoints(1)-hydrline)**2.+ 
     &                     (HiSScentpoints(2)-hydrline)**2.+ 
     &                     (HiSScentpoints(3)-hydrline)**2.) 
C 
                IF (DistB>surfintercept*SQRT(3.)) THEN 
                    DistB=surfintercept*SQRT(3.) 
                END IF 
                Dist=ABS(((DistA+DistB)/DistB)-1.) 
                IF (intestJstress<=0.) THEN 
                    A = 0. 
                ELSE 
                    A=(ABS(ATAN(SQRT(intestJstress)/intestIstress) 
     &                /0.528))**k3 
                END IF 
            END IF 
C 
C           Outputs 
C 
            DO k=1,3 
                surfstress(k)=HiSScentpoints(k) 
                dFdsigma(k)=centnorm(k) 
            END DO 
        END IF 
        END IF 
      END IF 
C 
C     The result from surfHiSS function are: stress vector at the HiSS surface, 
C     surfstress(k), the normal vector to the surface on the direction of the  
C     applied stress (strain trajectory), dFdsigma(k), and the relative distance 
C     from the applied stress to the hydrostatic plane, Dist. With these parameters 
C     is possible now to compute the principal viscoplastic strain rates, devpdt(k), 
C     and incremental viscoplastic strains, evp(k). 
C 
      DO k=1,3 
        devpdt(k)=(10.**tau)*A*(Dist**NN)*dFdsigma(k) 
        evp(k)=-devpdt(k)*(dtime)*(1./tempshift) 
C     The negative sign is to transform back into compression (-) 
      END DO 
C            
C     After the incremental viscoplastic strains are computed in principal plane, it is 
C     necessary to bring back the original orientation. In this verification test it is assumed 
C     the vertical and horizontal strains corresponds respectively to major and minor and 
mid 
C     strains. 
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C 
C     normal vp strains 
      evpt(1)=evp(1)*cs(1,1)**2.+evp(2)*cs(2,1)**2.+ 
     &          evp(3)*cs(3,1)**2. 
      evpt(2)=evp(1)*cs(1,2)**2.+evp(2)*cs(2,2)**2.+ 
     &          evp(3)*cs(3,2)**2. 
      evpt(3)=evp(1)*cs(1,3)**2.+evp(2)*cs(2,3)**2.+ 
     &          evp(3)*cs(3,3)**2. 
C 
C     shear vp strains 
      evpt(4)=evp(1)*cs(1,1)*cs(1,2)+evp(2)*cs(2,1)*cs(2,2)+ 
     &          evp(3)*cs(3,1)*cs(3,2) 
      evpt(5)=evp(1)*cs(1,1)*cs(1,3)+evp(2)*cs(2,1)*cs(2,3)+ 
     &          evp(3)*cs(3,1)*cs(3,3) 
      evpt(6)=evp(1)*cs(1,2)*cs(1,3)+evp(2)*cs(2,2)*cs(2,3)+ 
     &          evp(3)*cs(3,2)*cs(3,3) 
C 
C 5.8. Update state variables (1-6)vpstrains, (7-9)HiSS surface stress, and 
C    (10-12) dFdsigma 
C                  
      STATEV(1)=STATEV(1)+evpt(1) 
      STATEV(2)=STATEV(2)+evpt(2) 
      STATEV(3)=STATEV(3)+evpt(3) 
      STATEV(4)=STATEV(4)+evpt(4) 
      STATEV(5)=STATEV(5)+evpt(5) 
      STATEV(6)=STATEV(6)+evpt(6) 
      STATEV(7)=surfstress(1) 
      STATEV(8)=surfstress(2) 
      STATEV(9)=surfstress(3) 
      STATEV(10)=dFdsigma(1) 
      STATEV(11)=dFdsigma(2) 
      STATEV(12)=dFdsigma(3) 
C 
C 5.9. Update Stress 
C 
C     For infinitesimal analysis (specimen in the lab), stresses are updated 
C     without corrections to the elastic strain. The following lines apply 
C 
C      DO k=1,ntens 
C        STRESS(k)=stressNEW(k) 
C      END DO 
C 
C     Otherwise the following lines must be active. Remove C's from the lines 
C     below and put C's on the lines above to activate the viscoplastic 
C     adjustments of the elastic strains       
C 
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C     Compute the recoverable strain increments 
C 
      DO k=1,ntens 
            destran(k)=DSTRAN(k)-evpt(k) 
      END DO 
C 
C     Compute adjusted stress 
      DO I=1,ntens 
        DO J=1,ntens 
          STRESS(I)= STRESS(I)+DDSDDE(I,J)*destran(J) 
        END DO 
      END DO 
C 
C 
C 6.0 Return back to ABAQUS 
C 
      RETURN 
      END 
c 
c 
c 
c 7. Subroutines           
c 
c===============================================================
===== 
      SUBROUTINE kbacktr(C,T,DIR,N) 
c===============================================================
===== 
c Developed by R. Hinterhoelzl (1999)  
c 
c Transform the 4th order tensor in the local coordinate system (in the 
c principal axes) back into a 4th order tensor in the global coordinate  
c system (global). 
c 
c     C(N,N): Jacobian in the local coordinate system of the principal axes 
c     T(N,N): Jacobian in the global (original) coordinate system 
c     DIR(I,J): DIRECTION COSINE BETWEEN Xi'(PRIN.) TO Xj (GLOBAL). 
c     N: Number of stresses (4 - axisymmetric and plane strain problems 
c                            6 - full 3D problems) 
c                           OBSERVATION: Not coded for plane stress problems 
c 
c     stress(1)=stress(1,1)     strain(1)=strain(1,1) 
c     stress(2)=stress(2,2)     strain(2)=strain(2,2) 
c     stress(3)=stress(3,3)     strain(3)=strain(3,3) 
c     stress(4)=stress(1,2)     strain(4)=strain(1,2) 
c     stress(5)=stress(1,3)     strain(5)=strain(1,3) 
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c     stress(6)=stress(2,3)     strain(6)=strain(2,3) 
c 
c 
      INCLUDE 'aba_param.inc' 
      REAL*8 DIR(3,3) 
      REAL*8 T(N,N),C(N,N),C0(3,3,3,3) 
c 
c 1) find the 4th order tensor C0(3,3,3,3)  in the local coordinate system 
c    from the 6x6 matrix C(NTENS,NTENS) 
c 
      DO I=1,3 
        DO J=1,3 
            DO K=1,3 
                DO L=1,3 
                    C0(I,J,K,L)=0.d0 
                END DO 
            END DO 
        END DO 
      END DO 
c 
      IF (N==4) THEN 
         
        C0(1,1,1,1)=C(1,1) 
        C0(1,1,2,2)=C(1,2) 
        C0(1,1,3,3)=C(1,3) 
        C0(2,2,1,1)=C(2,1) 
        C0(2,2,2,2)=C(2,2) 
        C0(2,2,3,3)=C(2,3) 
        C0(3,3,1,1)=C(3,1) 
        C0(3,3,2,2)=C(3,2) 
        C0(3,3,3,3)=C(3,3) 
C         
        C0(1,2,1,2)=C(4,4) 
        C0(1,2,2,1)=C(4,4) 
        C0(2,1,1,2)=C(4,4) 
        C0(2,1,2,1)=C(4,4) 
      ELSEIF (N==6) THEN 
        C0(1,1,1,1)=C(1,1) 
        C0(1,1,2,2)=C(1,2) 
        C0(1,1,3,3)=C(1,3) 
        C0(2,2,1,1)=C(2,1) 
        C0(2,2,2,2)=C(2,2) 
        C0(2,2,3,3)=C(2,3) 
        C0(3,3,1,1)=C(3,1) 
        C0(3,3,2,2)=C(3,2) 
        C0(3,3,3,3)=C(3,3) 
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        C0(1,2,1,2)=C(4,4) 
        C0(1,3,1,3)=C(5,5) 
        C0(2,3,2,3)=C(6,6) 
c       
        C0(1,2,2,1)=C(4,4) 
        C0(1,3,3,1)=C(5,5) 
        C0(2,3,3,2)=C(6,6) 
        C0(2,1,1,2)=C(4,4) 
        C0(3,1,1,3)=C(5,5) 
        C0(3,2,2,3)=C(6,6) 
        C0(2,1,2,1)=C(4,4) 
        C0(3,1,3,1)=C(5,5) 
        C0(3,2,3,2)=C(6,6) 
      END IF 
c 
c 2) find the NTENSxNTENS matrix T(N,N) in the global coordinate system from the 
c    4th order tensor in the local coordinate system C0(3,3,3,3) 
      DO I=1,N 
        DO J=1,N 
            T(I,J)=0.d0 
        END DO 
      END DO 
c 
      DO M=1,3 
        T(M,M)=0.d0 
        DO I=1,3 
          DO J=1,3 
            DO K=1,3 
              DO L=1,3 
                T(M,M)=T(M,M)+DIR(I,M)*DIR(J,M)*DIR(K,M)*DIR(L,M)* 
     &                 C0(I,J,K,L) 
              END DO 
            END DO 
          END DO 
        END DO 
      END DO 
c 
      DO I=1,3 
        DO J=1,3 
          DO K=1,3 
            DO L=1,3 
              IF (N==4) THEN 
                T(4,4)=T(4,4)+DIR(I,1)*DIR(J,2)*DIR(K,1)*DIR(L,2)* 
     &                 C0(I,J,K,L) 
                T(1,2)=T(1,2)+DIR(I,1)*DIR(J,1)*DIR(K,2)*DIR(L,2)* 
     &                 C0(I,J,K,L) 
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                T(1,3)=T(1,3)+DIR(I,1)*DIR(J,1)*DIR(K,3)*DIR(L,3)* 
     &                 C0(I,J,K,L) 
                T(2,3)=T(2,3)+DIR(I,2)*DIR(J,2)*DIR(K,3)*DIR(L,3)* 
     &                 C0(I,J,K,L) 
              ELSE IF (N==6) THEN 
                T(4,4)=T(4,4)+DIR(I,1)*DIR(J,2)*DIR(K,1)*DIR(L,2)* 
     &                 C0(I,J,K,L) 
                T(5,5)=T(5,5)+DIR(I,1)*DIR(J,3)*DIR(K,1)*DIR(L,3)* 
     &               C0(I,J,K,L) 
                T(6,6)=T(6,6)+DIR(I,2)*DIR(J,3)*DIR(K,2)*DIR(L,3)* 
     &                 C0(I,J,K,L) 
                T(1,2)=T(1,2)+DIR(I,1)*DIR(J,1)*DIR(K,2)*DIR(L,2)* 
     &                 C0(I,J,K,L) 
                T(1,3)=T(1,3)+DIR(I,1)*DIR(J,1)*DIR(K,3)*DIR(L,3)* 
     &                 C0(I,J,K,L) 
                T(2,3)=T(2,3)+DIR(I,2)*DIR(J,2)*DIR(K,3)*DIR(L,3)* 
     &                 C0(I,J,K,L) 
              END IF 
            END DO 
          END DO 
        END DO 
      END DO       
c 
      T(2,1)=T(1,2) 
      T(3,1)=T(1,3) 
      T(3,2)=T(2,3) 
c 
      RETURN 
      END 
c 
c 
c 
      SUBROUTINE kprind(ps,an,cs,e11p,e22p,e33p) 
c       
c Developed by R. Hinterhoelzl (1999)  
c 
      INCLUDE 'aba_param.inc' 
      REAL*8 an(3,3),cs(3,3),ps(3)       
c      
c the principal values ps(3) are not ordered; 
c now they are ordered to e33p>e22p>e11p since 3 will become the axis of 
c symmetry of the transverse isotropy; accordingly the array of the cosines is 
c changed to cs(3,3); 
c 
c 1) Change the direction of the normal vector if det(an)=-1 to get a 
c     coordinate system that satisfies the right hand rule 



www.manaraa.com

 

 223 

 

c 
      det=(an(1,1)*an(2,2)*an(3,3)+an(1,2)*an(2,3)*an(3,1)+ 
     &     an(1,3)*an(2,1)*an(3,2)-an(1,3)*an(2,2)*an(3,1)- 
     &     an(1,2)*an(2,1)*an(3,3)-an(1,1)*an(2,3)*an(3,2)) 
c 
      IF(det<(-0.999d0)) THEN 
         an(1,1)=-an(1,1) 
         an(1,2)=-an(1,2) 
         an(1,3)=-an(1,3) 
         an(2,1)=-an(2,1) 
         an(2,2)=-an(2,2) 
         an(2,3)=-an(2,3) 
         an(3,1)=-an(3,1) 
         an(3,2)=-an(3,2) 
         an(3,3)=-an(3,3) 
      END IF 
c 
c 2) find 3 as the major axis 
         imax=1 
         smax=ps(1) 
         DO i=2,3 
            IF(ps(i)>=smax) THEN         
               imax=i 
               smax=ps(i) 
            END IF           
         END DO 
c 
           e33p=ps(imax)     
c  
         cs(3,1)=an(imax,1) 
         cs(3,2)=an(imax,2) 
         cs(3,3)=an(imax,3) 
c 
c 3) find the next two axes 
         IF(imax==1) THEN                
            i2=2 
            i3=3 
          ELSE IF(imax==2) THEN 
             i2=1 
             i3=3 
          ELSE 
             i2=1 
             i3=2 
          END IF                          
c 
          med=i2 
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          min=i3           
          IF(ps(i3)>ps(i2)) THEN        
             i3= med 
             i2= min 
          END IF      
c 
             e22p=ps(i2) 
             e11p=ps(i3)    
          DO k=1,3 
             cs(2,k)=an(i2,k) 
             cs(1,k)=an(i3,k) 
          END DO 
c 
      RETURN 
      END 
C 
C 
C 
      SUBROUTINE newperpHiSS(gamma1,alpha1,n1,R1,sigmaij,stressHiSS) 
C 
C Developed based on algorithm written by Gibson (2006) 
C 
C This function takes the HiSS surface defintion parameters and the stress point to  
C create a normal line from the Hydrostatic line to the stress point. It also finds the 
C line intersection point on the HiSS surface, assuming the two solutions for the 
C points on this line to be a quadratic relation. Three points are generated from an old 
C Newton-Rapshon scheme that then calls a function to find the coefficients and roots. 
C 
      INCLUDE 'aba_param.inc' !Required for ABAQUS UMAT 
C 
C Definition of Variables 
C 
C gamma - parameter gamma for the HiSS surface 
C alpha - parameter alpha for the HiSS surface 
C n - parameter n for the HiSS surface 
C R - parameter R for the HiSS surface 
C sigmaii - vector of principal stresses given 
C stressHiSS - stress vector of HiSS surface point 
C surfintercept 
C sigaa 
C a,b,c,d - define two point parametric equation of a line in 3D 
C s1, surferr, count 
C sigmaiia,sigmaiib 
C s1newa,s1newb 
C F,dF 
C rootsel - variable to select the appropriate root from the N-R scheme 
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C xpoint - vector of three x points definining the polynomial 
C ypoint - vector of three y points definining the polynomial 
C qa,qb,qc - polynomial coefficients 
C qc1,qc2,qc3,qc4 - parameters to determine qa,qb,qc from the (x,y) points 
C 
      REAL*8 sigmaij(3),stressHiSS(3),stressHiSSa(3),stressHiSSb(3), 
     &       gamma1,alpha1,n1,R1,surfintercept1,sigaa,a,b,c,d,s1, 
     &       F,dF,s1newa,rootsel 
C     Variables required for the root calculation      
      REAL*8 xpoint(3),ypoint(3),roots(2), 
     &       qa,qb,qc,qc1,qc2,qc3,qc4 
C 
      surfintercept1=(1./3.)*(((alpha1/gamma1)**(1./(2.-n1)))-R1) 
C 
C     Determine the hydrostatic stress point (sigaa) that creates a perpendicular line 
C     from the given stress point to the hydrostatic axis using the dot product rule for 
C     90 degrees 
      sigaa=(sigmaij(1)+sigmaij(2)+sigmaij(3))/3. 
C 
      IF (ABS(sigaa-surfintercept1)<0.00001) THEN 
        stressHiSS(1)=surfintercept1 
        stressHiSS(2)=surfintercept1 
        stressHiSS(3)=surfintercept1 
      ELSE 
C       Point 1 is (sigmaii(1),sigmaii(2),sigmaii(3)) and point 2 is (sigaa,sigaa,sigaa) 
C       Slope and intercept for equation of sigmaii(2)=f(sigmaii(1)) using two point 
C       parametric equation for line in 3D space. 
        a=(sigmaij(2)-sigaa)/(sigmaij(1)-sigaa) 
        b=(-sigaa)*a+sigaa 
C       Slope and intercept for equation of sigmaii(3)=f(sigmaii(1)) 
        c=(sigmaij(3)-sigaa)/(sigmaij(1)-sigaa) 
        d=(-sigaa)*c+sigaa 
C       This linear equations are substituded for sigmaii(2) and sigmaii(3) in the 
C       HiSS surface equation. 
C        
        s1=sigaa  !This term sets the initial value for sigma11 
C 
C       The following is the Newton-Raphson iteration given the function and its 
C       derivative. An additional component is required to compute both solutions to the 
C       flow surface (quadratic equation) and allow the algorithm to select the desired 
C       solution which is the one between the hydrostatic sigaa and the actual stressij 
C      (sigmaij). 
C 
C       Initialize Newton-Raphson to compute three points for the quadratic function. 
        DO k=0,3 
           F=(1./3.)*((s1**2)+((a*s1+b)**2)+((c*s1+d)**2)-(s1*(a*s1+b))- 
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     &       ((a*s1+b)*(c*s1+d))-(s1*(c*s1+d)))-gamma1*((s1+(a*s1+b)+ 
     &       (c*s1+d)+R1)**2)+alpha1*((s1+(a*s1+b)+(c*s1+d)+R1)**n1) 
C           The following equation had a bug fixed at 2*c*c*s1 term on the first line. 
C           Originally 2*c*s1 
           dF=(1./3.)*(2.*s1+2.*a*a*s1+2.*a*b+2.*c*s1+2.*c*d+2.*a*s1+b+ 
     &          2.*a*c*s1+b*c+a*d+2.*c*s1+d)- 
     &          2.*gamma1*(s1+a*s1+b+c*s1+d+R1)*(1.+a+c)+ 
     &          n1*alpha1*((s1+a*s1+b+c*s1+d+R1)**(n1-1.))*(1.+a+c) 
            s1newa=s1-(F/dF) 
            IF (k==1) THEN 
                xpoint(1)=s1 
                ypoint(1)=F 
            ELSEIF (k==2) THEN 
                xpoint(2)=s1 
                ypoint(2)=F 
            ELSEIF (k==3) THEN 
                xpoint(3)=s1 
                ypoint(3)=F 
            END IF 
            s1=s1newa 
        END DO 
C       Compute the roots of the quadratic function originated from the N-R 
        qc1=xpoint(1)*(ypoint(2)-ypoint(3))- 
     &      xpoint(2)*(ypoint(1)-ypoint(3))+ 
     &      xpoint(3)*(ypoint(1)-ypoint(2)) 
        qc2=xpoint(1)*xpoint(1)*(ypoint(2)-ypoint(3))- 
     &      xpoint(2)*xpoint(2)*(ypoint(1)-ypoint(3))+ 
     &      xpoint(3)*xpoint(3)*(ypoint(1)-ypoint(2)) 
        qc3=xpoint(1)*xpoint(1)*(xpoint(2)-xpoint(3))- 
     &      xpoint(2)*xpoint(2)*(xpoint(1)-xpoint(3))+ 
     &      xpoint(3)*xpoint(3)*(xpoint(1)-xpoint(2)) 
      qc4=xpoint(1)*xpoint(1)*(xpoint(2)*ypoint(3)-xpoint(3)*ypoint(2))- 
     &    xpoint(2)*xpoint(2)*(xpoint(1)*ypoint(3)-xpoint(3)*ypoint(1))+ 
     &    xpoint(3)*xpoint(3)*(xpoint(1)*ypoint(2)-xpoint(2)*ypoint(1)) 
        qc2=-qc2 
        qc4=-qc4 
C 
        qa=-qc1/qc3 
        qb=-qc2/qc3 
        qc=-qc4/qc3      
C 
        roots(1)=(-qb+SQRT(qb*qb-4.*qa*qc))/(2.*qa) 
        roots(2)=(-qb-SQRT(qb*qb-4.*qa*qc))/(2.*qa) 
C         
        stressHiSSa(1)=roots(1) 
        stressHiSSa(2)=a*roots(1)+b 
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        stressHissa(3)=c*roots(1)+d 
C 
        stressHiSSb(1)=roots(2) 
        stressHiSSb(2)=a*roots(2)+b 
        stressHissb(3)=c*roots(2)+d 
C 
        rootsel=(stressHiSSa(1)-sigaa)*(sigmaij(1)-sigaa)+ 
     &          (stressHiSSa(2)-sigaa)*(sigmaij(2)-sigaa)+ 
     &          (stressHiSSa(3)-sigaa)*(sigmaij(3)-sigaa) 
        IF (rootsel>0.) THEN 
            stressHiSS(1)=stressHiSSa(1) 
            stressHiSS(2)=stressHiSSa(2) 
            stressHiSS(3)=stressHiSSa(3) 
        ELSE 
            stressHiSS(1)=stressHiSSb(1) 
            stressHiSS(2)=stressHiSSb(2) 
            stressHiSS(3)=stressHiSSb(3) 
        END IF 
      END IF 
      RETURN 
      END 
C 
C 
C 
      SUBROUTINE dHiss(gamma2,alpha2,n2,R2,sii,dFds) 
C 
C Developed based on algorithm written by Gibson (2006) 
C 
C This function computes the normal vector dFds on the HiSS surface using the surface 
C parameters and the applied stress point as inputs 
C 
      INCLUDE 'aba_param.inc' !Required for ABAQUS UMAT 
C 
C Definition of variables 
C 
C gamma - parameter gamma for the HiSS surface 
C alpha - parameter alpha for the HiSS surface 
C n - parameter n for the HiSS surface 
C R - parameter R for the HiSS surface 
C sii - vector of principal stresses 
C dFds - normal vector to the HiSS surface 
C 
      REAL*8 sii(3),dFds(3),gamma2,alpha2,n2,R2 
C 
      dFds(1)=(1./3.)*(2.*sii(1)-sii(2)-sii(3))- 
     &        2.*gamma2*(sii(1)+sii(2)+sii(3)+R2)+ 
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     &        n2*alpha2*((sii(1)+sii(2)+sii(3)+R2)**(n2-1.)) 
      dFds(2)=(1./3.)*(2.*sii(2)-sii(1)-sii(3))- 
     &        2.*gamma2*(sii(1)+sii(2)+sii(3)+R2)+ 
     &        n2*alpha2*((sii(1)+sii(2)+sii(3)+R2)**(n2-1.)) 
      dFds(3)=(1./3.)*(2.*sii(3)-sii(1)-sii(2))- 
     &        2.*gamma2*(sii(1)+sii(2)+sii(3)+R2)+ 
     &        n2*alpha2*((sii(1)+sii(2)+sii(3)+R2)**(n2-1.)) 
      RETURN 
      END 
C 
C 
C 
      SUBROUTINE unitvector(vec,uvec) 
C 
C This function computes the unit vector of a given vector 
C 
      INCLUDE 'aba_param.inc' !Required for ABAQUS UMAT 
C 
C Definition of variables 
C 
C vec - vector 
C uvec - unit vector 
C 
      REAL*8 vec(3),uvec(3) 
C 
      DO k=1,3 
        uvec(k)=vec(k)*(1./(SQRT(vec(1)*vec(1)+ 
     &                           vec(2)*vec(2)+vec(3)*vec(3)))) 
      END DO 
      RETURN 
      END 
C 
C 
C 
      SUBROUTINE gethydrpntext(sigii,pointHiSS,hydrostress) 
C 
C Developed based on algorithm written by Gibson (2006) 
C 
C This function computes the intersection between the line passing by the applied stress 
C and the HiSS stress points and the Hydrostatic line 
C 
      INCLUDE 'aba_param.inc' !Required for ABAQUS UMAT 
C 
C Definition of Variables 
C 
C sigii - vector of applied stress 
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C pointHiSS - vector of point on HiSS surface 
C hydrostress - output of this function - the intercept 
C s13slope - slope of the 3D line 
C 
      REAL*8 sigii(3),pointHiSS(3),s13slope,hydrostress 
C 
      s13slope=(pointHiSS(1)-sigii(1))/(pointHiSS(3)-sigii(3)) 
C      IF (1.-s13slope==0.) THEN 
C        hydrostress = 0. 
C      ELSE 
      hydrostress = (pointHiSS(1)-(s13slope*pointHiSS(3)))/(1.-s13slope) 
C      END IF 
      RETURN 
      END 
C 
C 
C 
      SUBROUTINE HNR(g,u,lambda1,gamma1,alpha1,n1,R1, 
     &               stressHiSS,dFds) 
C 
C Developed based on algorithm written by Gibson (2006) 
C 
C This function applies a Newton-Raphson algorithm to find a point on the Hiss 
C surface that is normal to the applied stress point. 
C 
      REAL*8 g(3),u(3),stressHiSS(3),dFds(3),unew(3) 
      REAL*8 lambda1,gamma1,alpha1,n1,R1 
 
      REAL*8 F1,F2,F3,F4,vct1,vct2,vct3,vct4,vct1store,vct2store, 
     &       vct3store,vct4store,dF1d1,dF1d2,dF1d3,dF1dlm,dF2d1,dF2d2, 
     &       dF2d3,dF2dlm,dF3d1,dF3d2,dF3d3,dF3dlm,dF4d1,dF4d2,dF4d3, 
     &       dF4dlm,dF1d1store,dF1d2store,dF1d3store,dF1dlmstore, 
     &       dF2d1store,dF2d2store,dF2d3store,dF2dlmstore,dF3d1store, 
     &       dF3d2store,dF3d3store,dF3dlmstore,dF4d1store,dF4d2store, 
     &       dF4d3store,dF4dlmstore,magold,magnew,errold,errnew, 
     &       surfintercept1 
      INTEGER FLAG,imax   
C 
      surfintercept1=(1./3.)*(((alpha1/gamma1)**(1./(2.-n1)))-R1) 
      FLAG = 0  !Flag if solution is complex 
c     Compute magnitude for error analysis 
      magold=SQRT(u(1)**2.+u(2)**2.+u(3)**2.) 
      errold=1. 
      imax=20 
      DO i=1,imax 
c        
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       IF (FLAG==0) THEN 
        F1=(g(1)-u(1))-lambda1*(((1./3.)*(2.*u(1)-u(2)-u(3))-2.*gamma1* 
     &    (u(1)+u(2)+u(3)+R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.)))) 
        F2=(g(2)-u(2))-lambda1*(((1./3.)*(2.*u(2)-u(1)-u(3))-2.*gamma1* 
     &    (u(1)+u(2)+u(3)+R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.)))) 
        F3=(g(3)-u(3))-lambda1*(((1./3.)*(2.*u(3)-u(2)-u(1))-2.*gamma1* 
     &    (u(1)+u(2)+u(3)+R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.)))) 
        F4=(1./3.)*(u(1)*u(1)+u(2)*u(2)+u(3)*u(3)-u(1)*u(2)-u(2)*u(3)- 
     &    u(1)*u(3))-gamma1*((u(1)+u(2)+u(3)+R1)**2.)+alpha1*((u(1)+ 
     &    u(2)+u(3)+R1)**n1) 
C 
        dF1d1=-1.-lambda1*((1./3.)*(2.)-2.*gamma1*(1.)+alpha1*n1* 
     7        (n1-1.)*((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF1d2=-lambda1*((1./3.)*(-1.)-2.*gamma1*(1.)+alpha1*n1*(n1-1.)* 
     &        ((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF1d3=-lambda1*((1./3.)*(-1.)-2.*gamma1*(1.)+alpha1*n1*(n1-1.)* 
     &        ((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF1dlm=-((1./3.)*(2*u(1)-u(2)-u(3))-2.*gamma1*(u(1)+u(2)+u(3)+ 
     &        R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.))) 
C 
        dF2d2=-1.-lambda1*((1./3.)*(2.)-2.*gamma1*(1.)+alpha1*n1* 
     &        (n1-1.)*((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF2d1=-lambda1*((1./3.)*(-1.)-2.*gamma1*(1.)+alpha1*n1*(n1-1.)* 
     &        ((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF2d3=-lambda1*((1./3.)*(-1.)-2.*gamma1*(1.)+alpha1*n1*(n1-1.)* 
     &        ((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF2dlm=-((1./3.)*(2.*u(2)-u(1)-u(3))-2.*gamma1*(u(1)+u(2)+u(3)+ 
     &        R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.))) 
C 
        dF3d3=-1.-lambda1*((1./3.)*(2.)-2.*gamma1*(1.)+alpha1*n1* 
     &        (n1-1.)*((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF3d2=-lambda1*((1./3.)*(-1.)-2.*gamma1*(1.)+alpha1*n1*(n1-1.)* 
     &        ((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF3d1=-lambda1*((1./3.)*(-1.)-2.*gamma1*(1.)+alpha1*n1*(n1-1.)* 
     &        ((u(1)+u(2)+u(3)+R1)**(n1-2.))*1.) 
        dF3dlm=-((1./3.)*(2.*u(3)-u(2)-u(1))-2.*gamma1*(u(1)+u(2)+u(3)+ 
     $         R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.))) 
C 
       dF4d1=((1./3.)*(2.*u(1)-u(2)-u(3))-2.*gamma1*(u(1)+u(2)+u(3)+R1)+ 
     &        alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.))) 
       dF4d2=((1./3.)*(2.*u(2)-u(1)-u(3))-2.*gamma1*(u(1)+u(2)+u(3)+R1)+ 
     &        alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.))) 
       dF4d3=((1./3.)*(2.*u(3)-u(2)-u(1))-2.*gamma1*(u(1)+u(2)+u(3)+R1)+ 
     &        alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.))) 
       dF4dlm=0. 
C 
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        vct1store=-F1+dF1d1*u(1)+dF1d2*u(2)+dF1d3*u(3)+dF1dlm*lambda1 
        vct2store=-F2+dF2d1*u(1)+dF2d2*u(2)+dF2d3*u(3)+dF2dlm*lambda1 
        vct3store=-F3+dF3d1*u(1)+dF3d2*u(2)+dF3d3*u(3)+dF3dlm*lambda1 
        vct4store=-F4+dF4d1*u(1)+dF4d2*u(2)+dF4d3*u(3)+dF4dlm*lambda1 
C       
        vct1=vct4store 
        vct2=vct1store 
        vct3=vct2store 
        vct4=vct3store 
C 
        dF1d1store=dF1d1 
        dF1d2store=dF1d2 
        dF1d3store=dF1d3 
        dF1dlmstore=dF1dlm 
C 
        dF2d1store=dF2d1 
        dF2d2store=dF2d2 
        dF2d3store=dF2d3 
        dF2dlmstore=dF2dlm 
C 
        dF3d1store=dF3d1 
        dF3d2store=dF3d2 
        dF3d3store=dF3d3 
        dF3dlmstore=dF3dlm 
C 
        dF4d1store=dF4d1 
        dF4d2store=dF4d2 
        dF4d3store=dF4d3 
        dF4dlmstore=dF4dlm 
C 
        dF1d1=dF4d1store 
        dF1d2=dF4dlmstore 
        dF1d3=dF4d2store 
        dF1dlm=dF4d3store 
C 
        dF2d1=dF1d1store 
        dF2d2=dF1dlmstore 
        dF2d3=dF1d2store 
        dF2dlm=dF1d3store 
C 
        dF3d1=dF2d1store 
        dF3d2=dF2dlmstore 
        dF3d3=dF2d2store 
        dF3dlm=dF2d3store 
C 
        dF4d1=dF3d1store 
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        dF4d2=dF3dlmstore 
        dF4d3=dF3d2store 
        dF4dlm=dF3d3store 
C 
C       begin Gauss-Jordan Elminiation 
C  
C       normalize first row 
        dF1d1store=dF1d1 
        dF1d1=1. 
        dF1d2=dF1d2/dF1d1store 
        dF1d3=dF1d3/dF1d1store 
        dF1dlm=dF1dlm/dF1d1store 
        vct1=vct1/dF1d1store 
C  
C       column1 
        dF4d1store=dF4d1 
        dF4d1=0. 
        dF4d2=dF4d2-dF1d2*dF4d1store 
        dF4d3=dF4d3-dF1d3*dF4d1store 
        dF4dlm=dF4dlm-dF1dlm*dF4d1store 
        vct4=vct4-vct1*dF4d1store 
C 
        dF3d1store=dF3d1 
        dF3d1=0. 
        dF3d2=dF3d2-dF1d2*dF3d1store 
        dF3d3=dF3d3-dF1d3*dF3d1store 
        dF3dlm=dF3dlm-dF1dlm*dF3d1store 
        vct3=vct3-vct1*dF3d1store 
C 
        dF2d1store=dF2d1 
        dF2d1=0. 
        dF2d2=dF2d2-dF1d2*dF2d1store 
        dF2d3=dF2d3-dF1d3*dF2d1store 
        dF2dlm=dF2dlm-dF1dlm*dF2d1store 
        vct2=vct2-vct1*dF2d1store 
C 
C       normalize second row 
        dF2d2store=dF2d2 
        dF2d1=dF2d1/dF2d2store 
        dF2d2=1. 
        dF2d3=dF2d3/dF2d2store 
        dF2dlm=dF2dlm/dF2d2store 
        vct2=vct2/dF2d2store 
C 
C       column2 
        dF4d2store=dF4d2 
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        dF4d2=0. 
        dF4d3=dF4d3-dF2d3*dF4d2store 
        dF4dlm=dF4dlm-dF2dlm*dF4d2store 
        vct4=vct4-vct2*dF4d2store 
C 
        dF3d2store=dF3d2 
        dF3d2=0. 
        dF3d3=dF3d3-dF2d3*dF3d2store 
        dF3dlm=dF3dlm-dF2dlm*dF3d2store 
        vct3=vct3-vct2*dF3d2store 
C 
C       normalize third row 
        dF3d3store=dF3d3 
        dF3d1=dF3d1/dF3d3store 
        dF3d2=dF3d2/dF3d3store 
        dF3d3=1. 
        dF3dlm=dF3dlm/dF3d3store 
        vct3=vct3/dF3d3store 
C         
C       column3 
        dF4d3store=dF4d3 
        dF4d3=0. 
        dF4dlm=dF4dlm-dF3dlm*dF4d3store 
        vct4=vct4-vct3*dF4d3store 
C 
C       solveforallnewstuff 
        unew(3)=vct4/dF4dlm 
        unew(2)=(vct3-dF3dlm*unew(3))/dF3d3 
        lambda1=(vct2-dF2dlm*unew(3)-dF2d3*unew(2))/dF2d2 
        unew(1)=(vct1-dF1dlm*unew(3)-dF1d3*unew(2)-dF1d2*lambda1)/dF1d1 
c        
        IF (unew(1)<-R1/3. .OR. unew(1)>surfintercept1) THEN 
            u(1)=0 
            u(2)=0. 
            u(3)=0. 
            FLAG=1 
            EXIT 
        END IF 
        IF (unew(2)<-R1/3. .OR. unew(2)>surfintercept1) THEN 
            u(1)=0 
            u(2)=0. 
            u(3)=0. 
            FLAG=1 
            EXIT 
        END IF 
        IF (unew(3)<-R1/3. .OR. unew(3)>surfintercept1) THEN 
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            u(1)=0 
            u(2)=0. 
            u(3)=0. 
            FLAG=1 
            EXIT 
        END IF 
 
        IF (unew(1)+unew(2)+unew(3)+R1<0.) THEN 
            u(1)=0. 
            u(2)=0. 
            u(3)=0. 
            FLAG=1 
            EXIT 
        ELSE 
            u(1)=unew(1) !0. 
            u(2)=unew(2) !0. 
            u(3)=unew(3) !0. 
        END IF 
C      Verify error with tolerance 
        magnew=SQRT(u(1)**2.+u(2)**2.+u(3)**2.) 
        errnew=ABS(magold-magnew)/magnew 
       IF (errnew <=0.01) THEN 
C            test=1 
            EXIT 
       ELSE 
            !IF (errnew>errold) THEN 
            !    countconver=countconver+1 
            !ENDIF 
            !IF (countconver >=10) THEN 
            !    !FLAG=1 
            !    !EXIT 
            !END IF 
       END IF 
       magold=magnew 
       errold=errnew 
c  
       END IF 
      END DO 
      IF (i>imax) THEN 
        stressHiSS(1)=0. 
        stressHiSS(2)=0. 
        stressHiSS(3)=0. 
        dFds(1)=0. 
        dFds(2)=0. 
        dFds(3)=0. 
      ELSE 
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        stressHiSS(1)=u(1) 
        stressHiSS(2)=u(2) 
        stressHiSS(3)=u(3) 
        IF (FLAG==0) THEN 
        dFds(1)=(((1./3.)*(2.*u(1)-u(2)-u(3))-2.*gamma1*(u(1)+u(2)+u(3)+ 
     &          R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.)))) 
        dFds(2)=(((1./3.)*(2.*u(2)-u(1)-u(3))-2.*gamma1*(u(1)+u(2)+u(3)+ 
     &          R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.)))) 
        dFds(3)=(((1./3.)*(2.*u(3)-u(2)-u(1))-2.*gamma1*(u(1)+u(2)+u(3)+ 
     &          R1)+alpha1*n1*((u(1)+u(2)+u(3)+R1)**(n1-1.)))) 
        ELSE 
            dFds(1)=0. 
            dFds(2)=0. 
            dFds(3)=0. 
        END IF 
C 
      END IF 
      RETURN 
      END 
C 
C 
C 
      SUBROUTINE princord(pps,psor) 
c 
c     pps - principal stress obtain from ABAQUS subroutine sprind 
c     psor - ordered principal p33>>p22>>p11 
c 
      INCLUDE 'aba_param.inc' 
      REAL*8 pps(3),psor(3)       
c      
c the principal values ps(3) are not ordered; 
c now they are ordered to psor(3)>psor(2)>psor(1), being compression (-). 
c 
      imax=1 
      smax=pps(1) 
      DO i=2,3 
        IF (pps(i)>=smax) THEN         
            imax=i 
            smax=pps(i) 
        END IF           
      END DO     
c 
      psor(3)=pps(imax) 
c 
      IF (imax==1) THEN                
        i2=2 
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        i3=3 
      ELSEIF (imax==2) THEN 
        i2=1 
        i3=3 
      ELSE 
        i2=1 
        i3=2 
      END IF                          
c 
      med=i2 
      min=i3           
      IF (pps(i3)>pps(i2)) THEN        
        i3= med 
        i2= min 
      END IF      
c 
      psor(2)=pps(i2) 
      psor(1)=pps(i3)    
c 
      RETURN 
      END 
C 
C 
C         
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